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1 Introduction

The standard view presented by most introductory and intermediate-level macroeconomics

textbooks is that cycles, driven by transitory or demand shocks, and trends, driven by

permanent or supply shocks, exist as separate phenomena. The concept of hysteresis, however,

allows for the possibility of studying the interactions between cycles and trends in a unified

framework. If hysteresis effects are relevant, then cycles driven by demand shocks—especially

those associated with large recessions—can have permanent effects on trends.

In this paper, we present novel models and methods aimed at estimating the evolution of

hysteresis effects over time, which we call dynamic hysteresis effects. To do so, we modify the

structure of unobserved components (UC) models by incorporating different timings that

capture a rich set of dynamic interactions between trends and cycles in output. We call the

proposed baseline model the hysteresis correlated unobserved components (HCUC) model,

which allows us to disentangle the long-run adverse effects associated with recessions from

other important effects that may also exist, such as time-to-build effects in the context of

correlated unobserved components (CUC) models for output. Thus, the HCUC model is

designed to capture two plausibly relevant characteristics of an economy: non-neutrality in the

long-run by introducing dynamic hysteresis effects and time-to-build effects by introducing

correlation between permanent and transitory innovations.

Using Bayesian estimation methods, we find two main empirical results for the US economy.

First, recessions have affected negatively potential output growth since the early 1970s, so

hysteresis effects have become more relevant to understand the dynamics of potential output

growth since then. Second, compared to the CUC model, the HCUC model estimates a lower

time-to-build effect, yields a more consistent and intuitive output gap estimate, and improves

the model fit of real GDP according to Bayesian model comparison methods. These results are

robust to several extensions of the baseline model also developed in the current article,

specifically, HCUC models that: (i) separate the effects of recessions and expansions; (ii)

consider a real-time recession indicator; (iii) introduce nonlinear effects via Markov regime

switching; (iv) consider a multivariate framework; and (v) contain alternative priors. Overall,

the empirical findings emphasize the increasing relevance of studying cyclical long-run

non-neutral effects and that conceptualizing the hysteresis effect and the time-to-build effect as

two different economic phenomena improves our understanding of the interactions between
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trends and cycles.

Our contribution is mainly related to two bodies of literature. First, notwithstanding its

conceptual importance, the empirical evidence in favor or against of hysteresis effects is still

open to debate (see also Blanchard, 2018, for example). While Cerra and Saxena (2008) found

that deep recessions permanently reduced GDP in a sample of 190 countries, Teulings and

Zubanov (2014) and Bakas and Mendieta-Muñoz (2020) reported different results when

alternative specifications and estimators are used. Ball (2009) argued that the natural rate of

unemployment is affected by aggregate demand in 20 developed countries, so hysteresis effects

are important; however, his estimation framework does not allow for a clear-cut separation

between permanent and highly persistent effects. Ball (2014) found evidence of hysteresis

effects in output in 23 countries associated with the Great Recession; but Eo and Morley

(2022) reported that the Great Recession generated a large, persistent negative output gap

rather than any hysteresis effects in the US economy. Blanchard et al. (2015) report some

evidence of hysteresis effects for a sample of 23 advanced economies: (i) approximately

two-thirds of recessions have been followed by lower output trends; (ii) in 50 percent of those

cases output growth rates also fell; and (iii) in 63 percent (20 percent) of those cases recessions

that are most likely associated with demand shocks have been followed by lower output trends

(lower output growth rates).1 Recent results using SVAR models for the US economy also

provide mixed evidence. Furlanetto et al. (2021) and Maffei-Faccioli (2021) found support for

the relevance of hysteresis effects by combining long-run zero and short-run sign restrictions

and using long-run sign restrictions, respectively; whereas Benatti and Lubik (2022) employ a

combination of long-run zero restrictions and both short- and long-run sign restrictions,

finding that hysteresis effects: (i) are virtually absent for samples excluding the Great

Recession of 2007-9; (ii) only appeared when including the period following the collapse of

Lehman Brothers; and (iii) possess a high probability of detection even when the

data-generating process (DGP) features none by construction.

Second, structural time series analysis, in general, and the CUC model, in particular,

represents a simple but notable alternative for studying the existence of hysteresis effects since

it allows researchers to explicitly model the interactions between permanent and transitory

1According to Blanchard et al. (2015), demand shocks are those associated with intentional disinflations, which
happened mostly in the 1980s and early 1990s.
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shocks.2 Although different contributions have shown the relevance of these interactions by

considering both univariate and multivariate CUC models for output, the estimation and

interpretation of hysteresis effects via CUC models also remains unclear.3 To sum up, as

discussed by Morley (2007) and Weber (2011), the CUC model does not posses a structural

interpretation. In other words, if permanent and transitory shocks are correlated, then the

reduced-form permanent and transitory shocks represent linear combinations of the structural

trend and cycle shocks.4 Li and Mendieta-Muñoz (2022) have recently shown that every CUC

model has a structural representation, so that the magnitude and direction of the possible

interactions among different unobserved components can be identified via the respective

structural CUC model. Nevertheless, the identification of possible hysteresis effects in this

context depends on the assumption that changes in the reduced-form covariance matrix in a

CUC model are derived from heteroskedasticity in its structural representation. The latter is

statistically relevant; however, it may not be a necessary or sufficient condition for the

existence of hysteresis since the extant theoretical literature has not referred to this possibility

when discussing the relevant channels in which hysteresis effects may arise.5

The current research contributes to the two aforementioned bodies of literature as follows.

With respect to the first, since our work develops UC models that explicitly consider different

timings to separate the hysteresis and time-to-build effects, our approach differs from the use of

SVAR models by using structural time series analysis, which addresses the concern of Fisher et

al. (2016) that differentiating permanent and transitory shocks in SVAR models is essentially a

subjective decision. Two further examples that illustrate this point can be provided. Firstly, as

discussed by Keating (2013a,b), structural shocks can possess different interpretations if demand

shocks are partially permanent in the Blanchard and Quah (1989) decomposition. Secondly, also

related to the latter, the evidence found by Cover et al. (2006) and Bashar (2011) is that demand

2If permanent and transitory shocks are assumed to be independent, then the CUC model corresponds to the
standard UC model (Harvey and Shephard, 1993; Durbin and Koopman, 2012).

3Univariate CUC models such as Morley et al. (2003) and Dungey et al. (2015) have been proposed for the
analysis of the dynamics of US output; whereas multivariate CUC models that show the presence of both
within-series and cross-series correlations between permanent and transitory shocks include Basistha (2007)—
who studied output and inflation, Sinclair (2009)—who studied output and unemployment, and Mitra and
Sinclair (2012)—who studied output across the G-7 countries.

4See also Proietti (2006) and González-Astudillo and Roberts (2022), who point out that several subtleties and
interpretative issues arise from trend-cycle decompositions with correlated components.

5Different economic theories that allow for various types of interactions between trends and cycles have been
proposed by several bodies of literature. Keating (2013a), Mendieta-Muñoz (2017), Garga and Singh (2021),
Fatás and Singh (2022), Gaĺı (2022) and Cerra et al. (2023) provide extensive literature reviews. Indeed, none
of these theories has explicitly associated the presence of hysteresis effects with the heterogeneity of variance.
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and supply shocks can be highly correlated, so that permanent changes in the economy associated

with the supply side are not independent of temporary changes associated with demand in the

G-7 countries.6 Hence, although we remain agnostic about the specific nature of the shocks that

affect the permanent and transitory components of output, we are to able to provide a direct

answer to a simple conceptualization of hysteresis: does the statistical evidence support the view

that large negative output gaps affect potential output growth over time?7

Regarding the second body of literature, since the empirical findings support the proposed

HCUC models by showing that the latter yield more consistent and intuitive output gap

estimates and improve the model fit of GDP in the US compared to CUC models, our research

stresses that it is beneficial to explicitly consider the hysteresis effect and the time-to-build

effect as two alternative sources of interaction between trends and cycles in output. In other

words, it is necessary to conceptualize the possible permanent effects derived from recessions

(hysteresis) and those related to positive supply shocks (time-to-build) as two separate

phenomena. In this sense, the proposed models and methods extend our understanding of the

interactions between cycles and trends by enriching the structure of UC models.

Besides this introduction, the rest of the paper comprises the following sections. Section 2

describes the CUC models with hysteresis effects and the estimation approaches. Section 3

summarizes the main empirical findings. Section 4 discusses the main results focusing on the

relevant policy implications. Finally, the main conclusions are presented in section 5.

2 The correlated unobserved components model with dynamic

hysteresis effects

We present the baseline model that extends the CUC model by introducing non-neutrality in the

long-run via dynamic hysteresis effects, followed by the identification conditions and the Bayesian

estimation procedure. Finally, we discuss model extensions that deal with some limitations of

the baseline specification.

6Interestingly, however, supply shocks do not seem to be sensitive to demand shocks in other developing countries,
such as Mexico (Mendieta-Muñoz, 2018).

7Section 2.4 in the paper clarifies this point further.
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2.1 Model specification

Let yt denote the logarithm of the US real GDP and t = 1, ..., T . We propose the following HCUC

model, that is, a correlated unobserved components model with dynamic hysteresis effects:

yt = τt + ct, (1)

∆τt = γt + ηt, (2)

ϕ(L)ct = ϵt, (3)ηt
ϵt

 ∼ N(0,Σ), Σ =

 σ2η ρσησϵ

ρσησϵ σ2ϵ

 , (4)

γt = zt(µ1, µ2,β
′)′, (5)

zt =
(
1{t<t0},1{t≥t0},1{t−1∈R}ct−1, ...,1{t−k∈R}ct−j

)
, (6)

where τt is the non-stationary permanent component of yt, and ct is the stationary transitory

component of yt. The components τt and ct can be called the trend (or potential output) and the

cycle (or output gap) of yt, respectively.
8 Also, L is the lag operator, ∆ = 1−L is the difference

operator, ϕ(L) = 1 −
∑p

i=1 ϕiL
i is an order-p autoregressive (AR(p)) polynomial, and 0 is a

zero matrix or vector of conformable size unless otherwise specified. The output gap dynamics

and error structure shown in equations (3) and (4), respectively, follow the usual specifications

of the CUC models studied by Morley et al. (2003) and Sinclair (2009). We follow Grant and

Chan (2017) and initialize the model by considering τ0 as a parameter and ch = 0 for h ≤ 0.

The main innovation of the above HCUC model is the incorporation of past cycles in the

dynamics of potential output τt via the cycle effect on the potential growth rate γt. This is

shown in equations (5) and (6), where τt is a random walk with a time-varying drift γt, given

the predetermined time-variant row vector zt. The coefficient vector in equation (5) consists of

two parts. First, µ1 and µ2 are the mean potential growth rates before and after a structural

break occurring at t0, respectively. Second, β = (β1, ..., βk)
′ collects the hysteresis coefficients,

8As Harvey and Shephard (1993) pointed out, if τt and ct are assumed to evolve independently, the model is
structural because only trend shocks affect yt permanently; while the effect of cycle shocks vanishes in the
long-run due to the stationarity condition. In this sense, if yt corresponds to the log real GDP and if we
assume long-run neutrality, it is possible to say that the estimated τt and ct are driven by supply and demand
shocks, respectively, and that the trend (the cycle) corresponds to potential output (output gap). In this
paper we use the terms trend and potential output (cycle and output gap) interchangeably.
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which include the past cycles affecting the permanent component of output. In equation (6), 1A

is an indicator function that equals 1 if the respective condition in A is satisfied and 0 otherwise.

We consider a one-time break in the dynamics of γt in order to capture the change in potential

output growth. There is ample evidence suggesting a secular decline in the post-war US GDP

growth rate due to supply-side factors, such as slower productivity growth and falling labor force

participation—see e.g. Gordon (2015), Fernald et al. (2017), Antolin-Diaz et al. (2017), Grant

and Chan (2017), Li and Mendieta-Muñoz (2020), and Hasenzagl et al. (2022). Although it

is possible to consider a gradually changing drift, Grant and Chan (2017) found overwhelming

evidence in favor of a model with only one break over models with multiple breaks or gradual

changes via comprehensive Bayesian model comparisons. Likewise, treating the drift component

as an extra stochastic process introduces an additional innovation that unnecessarily complicates

the model’s identification. Hence, in the HCUC model we attribute the supply-driven permanent

drop in potential output growth to the estimated difference µ2 − µ1.

Besides the declining potential output growth rate, zt models dynamic hysteresis effects via

β. In equation (6), R collects time indices for when past cycles affect the potential output. We

clarify three points. First, if β = 0, the effect of ct on yt is transitory due to the stationarity

condition. On the other hand, if β ̸= 0, such fluctuations affect τt and, thus, yt permanently.

The latter is the hysteresis effect, which would imply that the assumption of long-run neutrality

no longer holds (Cerra et al., 2023).9

Second, the choice of R is important. Our baseline HCUC model shown in equations (1)

through (6) considers that zt is a function of a predetermined R. When discussing hysteresis

effects, macroeconomists often refer to the adverse effect of large negative demand shocks

associated with recessions on long-run growth rates (see, e.g., Cerra and Saxena, 2008 and

Ball, 2014). Therefore, we follow the standard approach and specify R to be an extended

recession set that covers NBER-dated recessions and two extra quarters preceding and

succeeding each recession. In the online appendix, we show that our results are robust to R

covering more quarters (four and eight) after each NBER-dated recession.

Consider a setting where a recession occurs in period one and lasts four periods. We are

9Notice that, similar to Blanchard et al. (2015), we restrict ct to have only lagged effects on γt. After all, the
original Greek word for “hysteresis” means “lagging behind”. Moreover, including the contemporaneous effect
of ct in (5) creates a tension between the actual hysteresis effect and the effect derived from the innovation
correlation ρ, which we explore in section 3.3.
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Table 1: An example of dynamic hysteresis effects

Period t 1 2 3 4 5 6 7 8 9 10
Recession ✓ ✓ ✓ ✓ ✓ × × × × ×

Effect of past cycles

ct−1 0 β1c1 β1c2 β1c3 β1c4 β1c5 0 0 0 0
ct−2 0 0 β2c1 β2c2 β2c3 β2c4 β2c5 0 0 0
ct−3 0 0 0 β3c1 β3c2 β3c3 β3c4 β3c5 0 0
ct−4 0 0 0 0 β4c1 β4c2 β4c3 β4c4 β4c5 0

Total effect

HEt 0 β1c1
∑2

1 βic3−i
∑3

1 βic4−i
∑4

1 βic5−i
∑4

1 βic5−i
∑3

1 βic7−i
∑2

1 βic8−i β4c5 0

Notes: The dynamic hysteresis effect at time t equals the total effect of past cycles multiplied by their corresponding coefficients.

In this example, we assume that k = 4.

interested in the dynamic hysteresis effect defined as:

HEt =

k∑
i=1

1{t−i∈R}βict−i, (7)

where k = 4. Table 1 illustrates the dynamic hysteresis effects in the HCUC model derived from

such a recession from t = 1 through t = 10. Two interesting features emerge in this setting: (i)

a full-scale hysteresis effect takes place shortly after the economy enters a recession and does

not fully die out until some periods after the recession is over; and (ii) because HEt corresponds

to the sum of past cycle effects, the estimated hysteresis effects can adopt different dynamics—

such as “fade-in”, “fade-out”, abrupt changes, or even oscillations—depending on the values of

the ct−i’s and βi’s coefficients. To summarize, we consider that HEt possesses (deterministic)

regime switching dynamics. With the recession indicators 1{t−i∈R}, i = 1, ..., k, HEt can adopt

2k regimes, extending the space of possible hysteresis effects in the model.

Third, the correlation coefficient ρ in (4) allows the trend and the cycle shocks to be correlated.

This is a key specification in many existing CUC models that does not preclude the possibility

that demand shocks are non-neutral in the long-run; however, as mentioned above, this implies

that the trend shock ηt and the cycle shock ϵt are no longer structural shocks.10 In CUC models

for GDP, Morley et al. (2003), Basistha (2007), Sinclair (2009), and Li and Mendieta-Muñoz

(2022) document a large negative correlation coefficient of approximately −0.9. Morley et al.

(2003) interpret this as a “time-to-build effect”: a large positive permanent shock, e.g. due to

10Namely, it is not possible to separate permanent (supply) and transitory (demand) shocks without further
assumptions (Keating, 2013b; Li and Mendieta-Muñoz, 2022).
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technological progress, makes the output gap temporarily below potential until it catches up.

Therefore, besides including the contemporaneous correlation of shocks via ρ, in the HCUC

model we also allow for long-run non-neutrality by explicitly incorporating dynamic hysteresis

as lagged effects, as defined in equation (7). Due to the different timing assumed for the two

effects, we are able to disentangle hysteresis effects from the possible time-to-build effects.

In sum, the baseline HCUC model is able to simultaneously study relevant characteristics of

output dynamics: (i) the secular decline in potential output growth; (ii) the time-to-build effect;

and (iii) the dynamic hysteresis effects. In this sense, the HCUC model nests the UC and the

CUC models as special cases. The UC model imposes no hysteresis or time-to-build effects, i.e.,

β = 0 and ρ = 0. The CUC model allows for the time-to-build effect, but no hysteresis effects,

i.e., β = 0 and ρ ̸= 0. The HCUC model also nests an UC model with dynamic hysteresis effects

(HUC model), which allows only for hysteresis effects with β ̸= 0 and ρ = 0.11

2.2 Identification

There are p + k + 3 parameters in the proposed baseline HCUC model: p AR parameters, k

hysteresis parameters, and 3 variance-covariance coefficients. This section discusses the order

and rank conditions for identification.

2.2.1 Necessary order condition

Consider a model with R = {1, ..., T}, i.e., hysteresis effects are always present. Define β(L) =

β1 + β2L+ ...+ βkL
k−1, such that HEt in (7) equals β(L)ct−1. We can rewrite (2) as

ϕ(L)∆yt = ϕ(L)(µ+ ηt + β(L)ct−1) + ∆ϵt

= ϕ(1)µ+ ϕ(L)ηt +∆ϵt + β(L)ϵt−1

= c+ θ(L)ut = c+mt, (8)

where θ(L) = 1 + θ1L + ... + θqL
q. Therefore, the reduced-form of yt has an ARIMA(p, 1, q)

representation. The moving average (MA) part mt = θ(L)ut in (8) has order q = max(p, k).

The autocovariances of mt give 1+q reduced-form parameters. With 3+k parameters in Σ and

β, the order condition is satisfied only if q ≥ 2 + k. Together with q = max(p, k), this implies

11Section 3.4 carries out the relevant comparisons among the model’s variants.
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that p = q. Therefore, the reduced-form ARIMA representation of yt must have order (p, 1, p)

for identification and satisfies the necessary order condition p ≥ 2 + k.

For example, in an HCUC model where only ct−1 enters the equation for τt, or k = 1, exact

identification requires the cycle to be an AR(3) process. In a model with ct−1 and ct−4 entering

the τt equation, or k = 4, identification requires the cycle to be at least an AR(6) process.

Regarding the growth rate of US real GDP, ∆yt is best fitted by an AR(3) or AR(4) process,

so p ≥ 2 + k may be too restrictive. In a model where hysteresis effects are always present, this

is indeed true. However, in an economy where expansions and recessions occur over time, the

relevant order condition is almost surely satisfied. To see this, we first note that if k = 0, p = 2 or

an AR(2) cycle suffices to identify Σ (see also Weber, 2011 and Li and Mendieta-Muñoz, 2022).

If Σ is identified, then there are at least 1+k non-zero autocovariances of mt that are functions

of k unknown βi’s. From a method of moments approach, the first three autocovariances of mt

during expansions (i.e., β = 0) provide enough information for Σ. Given an identified Σ, the

last k autocovariances during recessions provide enough information to identify β.

2.2.2 Sufficient rank condition

From the reduced-form representation shown in equation (8), the AR coefficients are identified.

Assuming that there are no common roots to ϕ(L) and θ(L) (i.e., there exists no value z∗ such

that ϕ(z∗) = θ(z∗) = 0), the AR part in (8) can be separated from the MA part such that we

can consider the reduced-form AR coefficients as given (Hotta, 1989).

The difficulty in deriving primitive conditions that guarantee the identification of Σ and β

comes from the nonlinear mapping from autocovariances of mt to Σ and β. There exists no

analytical solution to this mapping. To see this, consider p = 3 and k = 1, which corresponds to

the simplest model that satisfies the order condition when hysteresis effects are always present.12

Let us omit the subscript of β1 and define b = β − 1. The MA component in (8) is given by

mt = θ(L)ut = ηt − ϕ1ηt−1 − ϕ2ηt−2 − ϕ3ηt−3 + ϵt + bϵt−1.

Let the autocovariances be defined by gh = E(mtmt−h) =
∑3−h

i=0 θiθi+hσ
2
u, h = 1, 2, ..., such that

12The discussion below can be easily extended to models with k > 1. We omit such extensions because these
merely involve a more elaborate mathematical notation.
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gh = 0 for h > 3. Let ρ = σηϵ/(σησϵ). It is possible to verify that:


g0

g1

g2

 =


1 + ϕ21 + ϕ22 + ϕ23 1− ϕ1b 1 + b2

−ϕ1 + ϕ1ϕ2 + ϕ2ϕ3 −ϕ1 − ϕ2b b

−ϕ2 + ϕ2ϕ3 −ϕ2 − ϕ3b 0



σ2η

σηϵ

σ2ϵ

 ,

g3 = −ϕ3σ2η − ϕ3bσηϵ.

(9)

In principle, we can solve for the four unknowns depicted above. However, b appears in (9)

nonlinearly, which creates multiplicity issues. The latter can be largely mitigated if we consider

the problem recursively: given b, we can solve for vech(Σ) = (σ2η, σηϵ, σ
2
ϵ )

′; and, given the latter,

b can be identified from the last equation in (9).

Let the first equation in (9) be written as g = A(b)vech(Σ). The task is then to check if A(b)

has full rank. Let Aij(b) denote the (i, j)-th element of A(b). The matrix A(b) is rank-deficient

if there exists α = (α1, α2)
′ ̸= 0 such that A∗(b)α = 0, where

A∗ =

 A11 − 1+b2

b A21 A31

A12(b)− 1+b2

b A22(b) A32(b)

 .
The factor −(1 + b2)/b is determined by noticing that A33 = 0, so that the only way to make

α1

(
(A13(b)+aA23(b)

)
= 0 is to set a = −(1+ b2)/b. Clearly, A(b) is rank-deficient only if A∗(b)

is rank-deficient; but this is almost surely impossible because det[A∗(b)] = 0 implies that b must

adopt some disjoint numbers, which are zero probability events. For this example (k = 1), it

can be easily verified that det[A∗(b)] yields a cubic polynomial in b that has at most 3 disjoint

roots. Therefore, under the order condition p = 2 + k, the rank condition is also satisfied.

This discussion clarifies that, if the HCUC model distinguishes recessions from expansions,

then the rank condition is automatically satisfied. From a method of moments approach, during

expansions, b = −1 and vech(Σ) is uniquely identified from g, as in the first equation of (9)

(that is, the first three autocovariances of the reduced-form representation). Therefore, β is

uniquely identified from the last k autocovariances, as in the last equation of (9).

Lastly, Basistha (2007) and Li and Mendieta-Muñoz (2022), among others, showed that a CUC

model tends to push ρ towards −1 even when the true DGP has zero trend-cycle correlation

ρ = 0, a feature also noted by Morley et al. (2003). In the online appendix, we conducted a Monte
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Carlo study with ρ = 0 in the DGP and find that the proposed HCUC model can successfully

detect zero correlation and helps to mitigate the overestimation issue via the inclusion of the

hysteresis effect. This result confirms the derivation above and our empirical study in section

3.2 that shows that the HCUC parameters are well identified, given enough moments from both

recessions and expansions.

2.3 Bayesian estimation

The HCUC model in equations (1) through (6) is estimated using an MCMC method that

approximates the posterior distributions of model parameters and unobserved components.13

Let us denote ϕ = (ϕ1, ..., ϕp)
′, σ = (ση, σϵ, ρ)

′, δ = (τ0, µ1, µ2,β
′)′, and θ = (ϕ′, δ′,σ′)′. We

also define y = (y1, ...yT )
′, and τ , c, η, and ϵ similarly. The MCMC sampler iterates over:

1. τ , c|y,θ,

2. θ|y, τ , c,

to generate draws from the posterior distribution p(τ , c,θ|y). In what follows we only discuss

the first block since this highlights the novelty of the sampling for our model; while the sampling

of the second block is more standard and is presented in the online appendix.

2.3.1 Sample τ , c|y,θ

The HCUC model can be written as:

y = τ + c, (10)H1 Hβ

0 Hϕ


τ

c

 =

α

0

+

η

ϵ

 ,

η

ϵ

 ∼ N (0,Σ⊗ IT ) , (11)

where IT is a T×T identity matrix. H1 andHϕ are T×T lower-triangular sparse band matrices,

both with ones on the main diagonal. H1 has minus ones on its lower diagonal; whereas Hϕ

13We adopt a Bayesian estimation approach because in this way we can simultaneously take into account the
estimation and filtering uncertainty. Likewise, we can also provide an intuitive and probabilistic interpretation
of model comparison, which we discuss in section 3.4. However, in principle, it is also possible to use a Kalman
filter-based frequentist approach to estimate the proposed HCUC model following, for example, Chapter 7 of
Durbin and Koopman (2012).
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has −ϕi on its i-th lower diagonal, i = 1, ..., p. Containing the hysteresis effect coefficients, Hβ

is a T × T lower-triangular sparse band matrix whose t-th row takes on the form

(
01×(t−k−1),−βk1{t−k∈R}, ...,−β11{t−1∈R},01×(T−t+1)

)
, t = 1, ..., T.

In equation (11), α =
(
τ0 + µ1, µ111×(t0−2), µ211×(T−t0+1)

)′
, where 1 is a matrix of ones with

dimension indicated by its subscript, namely, α specifies the initialization of potential output,

and the pre- and the post-break potential output growth rates.

In the online appendix, we show that (τ ′, c′)′ in (11) is multivariate Gaussian and c|θ assumes

a conditional Gaussian prior given by:

p(c|θ) ∝ σ−T
ϵ exp

(
− 1

2σ2ϵ
c′H ′

ϕHϕc

)
. (12)

In the online appendix we also show that τ assumes a conditional normal distribution, given c

and θ. As a result, we can derive the conditional likelihood

p(y|c,θ) ∝ σ−T
η (1− ρ2)−

T
2 exp

(
− 1

2(1− ρ2)σ2η
(H1y −α−Bc)′(H1y −α−Bc)

)
, (13)

such that y|c,θ ∼ N
(
H−1

1 α+H−1
1 Bc, (1−ρ2)σ2η(H ′

1H1)
−1

)
where B =

ρση

σϵ
(Hϕ−Hβ)+H1.

Combining (12) and (13), we can construct the conditional posterior distribution of the cycle:

c|y,θ ∼ N

(
1

(1− ρ2)σ2η
K−1

c B′(H1y −α),K−1
c

)
, (14)

where Kc = 1
σ2
ϵ
H ′

ϕHϕ+
1

(1−ρ2)σ2
η
B′B is the precision matrix with a sparse and band structure.

We use the precision sampler of Chan and Jeliazkov (2009) to efficiently draw c from the above

conditional posterior, utilizing fast and low-memory inversion and Cholesky decomposition for

sparse and band matrices. Subtracting the sampled cycle c from y gives a draw for the trend τ .

2.3.2 Prior distributions of static parameters

We assign independent priors for elements in ϕ, δ, and σ. Specifically, ϕ ∼ N(µϕ, Ip)1{λ̄(Φ)<1},

with the prior mean µϕ = (1.3,−0.7,01×(p−2)) indicating an AR(2) cycle with complex roots

(Hasenzagl et al., 2022). The condition 1{λ̄(Φ)<1} ensures stationarity: the largest eigenvalue of
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Φ in absolute value, denoted by λ̄(Φ), is less than 1, where Φ is the transition matrix of the

AR(p) cycle put in the companion form.

Second, δ ∼ N(µδ,V δ), where µδ = (750, 0.75, 0.375,01×k)
′ and V δ is diagonal. The first

three elements of µδ are the prior means of τ0, µ1 and µ2 which are chosen based on Sinclair

(2009), Grant and Chan (2017), and Eo and Morley (2022). These values imply that a priori

hysteresis effects are absent and the annual growth rate of US real GDP is 3% before t0 and

1.5% after. We follow the extensive model comparison results in Grant and Chan (2017) and fix

the break date t0 = 2007:Q1. Large prior variances are used: V δ
11 = 100, V δ

22 = V δ
33 = 1, and

V δ
ii = 10 for i ≥ 4. Regarding the COVID-19 distortion, we simply treat the observation y2020:Q1

as missing so that the estimated COVID effect is COVID|y = y2020:Q1 − (τ2020:Q1 + c2020:Q1)|y.

This is equivalent to the dummy variable treatment yt = τt + ct + ν1{t=2020:Q1}, where the

coefficient has a flat prior ν ∼ N(0,∞).

Lastly, we use ση, σϵ ∼ U [0, 3], and ρ ∼ U [−1, 1]. Hence, p(σ) is flat over the specified

interval. We consider the uniform prior for variances more appealing than the inverse gamma

prior because it does not exclude zero a priori and has a wider admissible range than what is

commonly used in the literature. Sampling details are presented in the online appendix.

2.4 Model’s extensions

2.4.1 The HlCUC model: HCUC with real-time recession dates

In section 2.1, the choice of R is based on NBER-dated recessions. Because NBER recession

dates are determined with a lag, the use of future data may introduce endogeneity issues into the

model—specifically, reverse causality. Although we included two extra quarters before and after

each recession to mitigate the timing issue, there is no guarantee that endogeneity completely

disappears. A simple remedy is to use a real-time recession indicator. Hence, to address the

reverse causality issue, we replace the NBER-dated recessions with the OECD-dated recessions.

Based on a set of leading indicators of the US economy, OECD recession dates are determined

by a turning point approach in real time (Gyomai and Wildi, 2013). We call this the HlCUC

model.

14



2.4.2 The H2CUC model: HCUC with positive hysteresis

So far we have only considered the adverse recession effects associated with hysteresis effects.

However, models that follow a Schumpeterian endogenous growth perspective have also

emphasized the possible favorable effects associated with expansions.14 To explore this

possibility, we consider a HCUC model with two sets of β parameters: one for recessions and

another for expansions. We call this extension the H2CUC model. In this model, the

time-varying drift in potential output is given by γt = 1{t<t0}µ1 + 1{t≥t0}µ2 +HEt, with

HEt = 1{t−1∈R}ct−1β1 + 1{t−2∈R}ct−2β2 + 1{t−1/∈R}ct−1β
e
1 + 1{t−2/∈R}ct−2β

e
2

defining the dynamic hysteresis effect such that βe is an extra parameter vector that measures

the effect of past cycles on potential output in non-recessionary periods. For identification, we

set p = 4 and k = 2.

2.4.3 The HsCUC model: HCUC with Markov switching

It is possible test for the presence or absence of hysteresis effects in an entirely model-consistent

and data-driven specification. Hence, we consider a Markov regime switching HCUC model,

which we call the HsCUC model. This extension corresponds to a nonlinear HCUC model,

where the determination of hysteresis effects is defined by a Markov process of two-state regime

switches (Hamilton, 1989).

Let us denote st = 1 if the hysteresis effect is present at time t, and st = 0 if otherwise. The

Markov regime switching is characterized by the following transition probabilities: P (st+1 =

0|st = 0) = q00, P (st+1 = 1|st = 0) = 1 − q00, P (st+1 = 1|st = 1) = q11, and P (st+1 = 0|st =

1) = 1− q11. This results in the following dynamic hysteresis effect HEt:

HEt = st−1ct−1β1 + ...+ st−kct−kβk.

It is worth noting that this model differs from the Markov-switching state space models

discussed by Kim (1994), which would imply HEt = st
∑k

i=1 ct−iβi. A HsCUC with k = 4 has

14For example, product varieties may increase as a result of higher investment during an expansion, which also
stimulates R&D activities that positively affect potential output (Aghion et al., 2015). Some of the results
reported by Mendieta-Muñoz (2017) support this view, who considered a different model specification.
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24 = 16 states, rather than just 2 states. Due to the so-called “label-switching issue” caused by

the large number of states (Kim, 1994), we do not use Hamilton filter-based methods for

estimation (Hamilton, 1989). Instead, we develop a single-move sampler that computes the

conditional posterior p(s|y, c, δ,σ, q), where s = (s1, ..., sT )
′ and q = (q00, q11)

′. For the

transition probabilities, we assign conjugate Dirichlet priors as in Li and Mendieta-Muñoz

(2022). Specifically, (q00, 1 − q00)
′ ∼ Dir(e1, e2) and (1 − q11, q11)

′ ∼ Dir(e2, e1) with e1 = 10

and e2 = 1. This implies that we assume persistent states with q00 = q11 = 10/11 a priori. The

detailed sampling procedure is presented in the online appendix.

2.4.4 The HmCUC model: HCUC with multivariate information

In section 2.2, we showed that all the parameters in the HCUC model can be identified given

enough sample moments; however, we cannot recover either shock, even if theory-based

restrictions (e.g., long-run neutrality) are imposed. This is due to the fact that there are two

shocks driving one observation, a common feature in UC models known as “excess shocks”

discussed by Pagan and Robinson (2022) or “deformation” by Canova and Ferroni (2022).

Nevertheless, our main purpose is to focus on studying whether the available statistical

evidence supports the presence or absence of hysteresis effects, instead of recovering demand or

supply shocks. Assuming that β is positive and that during recessions the output gap is

negative, the presence of the hysteresis effect can be corroborated if potential output is

adversely affected by the output gap. Thus, our model specification extracts the parts of the

cycle that permanently affect output—that is, HEt as defined in (7); but it remains agnostic

about the nature of the two shocks.

The results in Pagan and Robinson (2022) and Canova and Ferroni (2022) imply that it

is impossible to recover supply and demand shocks in a univariate UC framework, so that any

values of trend and cycle within the reported error bands are possible realizations of supply- and

demand-driven fluctuations. As a result, the data used for model estimation greatly matters, as

documented by the large literature that has pointed out that estimates of output gap are sensitive

to the information set (see, for example, Basistha, 2007, Grant and Chan, 2017, Blanchard, 2018,

González-Astudillo and Roberts, 2022 and Berger et al., 2023). As a robustness check and prior

sensitivity analysis, we develop a multivariate extension of the baseline HCUC model, which
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we call the HmCUC model. In this model, the output gap ct also affects the dynamics of other

macroeconomic variables, so that ct becomes a common factor driving several variables. In other

words, we expand the information set in the estimation to measure more accurately the output

gap. The HmCUC model consists of equations (4) through (6) and

yit = τ it + κi1ct + κi2ct−1 + ψi
t,

where i = (πt, ut, qt), which indicates the year-on-year core CPI inflation, the unemployment

rate, and the debt-service ratio (DSR), respectively. The use of πt and ut can be regarded as

relevant for models’ specifications that follow the Phillips curve and the Okun’s law, respectively.

Following Johnson and Li (2010), we include the DSR as a measure of the borrowing constraints

and financial stress faced by US households, which we construct as the ratio of required household

debt payments (sum of mortgage and consumer debt payments) to disposable income.

In this model, τ it is an independent random walk for variable-specific trend, and yit − τ it is the

gap component. These gaps have a factor structure with ct as the common factor. The delayed

common effect from ct−1 captures dynamic heterogeneous response among variables (Hasenzagl

et al., 2022). Additionally, we specify the idiosyncratic components ψi
t’s as correlated AR(2)

processes, so that the cycles in the HmCUC model have a generalized dynamic factor structure

(Forni et al., 2000; Bai, 2003).15

Finally, as a prior sensitivity check for the proposed HCUC models, we assume that Σ and Σ∗

in the HmCUC model have inverse-Wishart priors centered at the identity matrix. The variances

of ηit’s are assigned independent gamma priors that do not exclude 0—so, a priori, variations in

yit’s are assumed to come mainly from their cycles with independent idiosyncratic components.

Sampling details are presented in the online appendix.

15In frequentist works, Forni et al. (2000) show that common factors can be identified despite the fact that a
factor model has more shocks than observables; while Bai (2003) shows that the estimated common factors
can be treated as being observed when the cross-sectional dimension is large. Future research may incorporate
a larger set of variables, in which case Forni et al. (2000)’s finding ensures that ct can be estimated even more
precisely.
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3 Estimating hysteresis effects in the US

Our empirical analysis for the US real GDP covers the period 1948:Q1-2022:Q3 for the baseline

HCUC model, as well as for the variants UC, CUC, HUC, H2CUC, HlCUC, and HsCUC models.

Due to data availability, the period for the multivariate HmCUC model begins in 1961:Q1. For

all models we considered an AR(2) cycle, i.e., p = 2 as in Morley et al. (2003), Sinclair (2009),

Grant and Chan (2017), Li and Mendieta-Muñoz (2020), and Hasenzagl et al. (2022). We set

k = 4. The estimation for each model is based on 70,000 MCMC iterations. The posterior sample

is constructed from every fifth draw from the 50,000 MCMC draws with the first 20,000 burn-in

periods discarded. We focus only on the presentation and discussion of the empirical results in

this section; while we discuss the mixing property of the sampler in the online appendix, as well

as the other relevant robustness checks. To summarize, the Markov chain shows satisfactory

mixing with effective sample size larger than 10% of the posterior sample size.

The rest of this section comprises four parts. Section 3.1 presents the results regarding the

estimated hysteresis effects, followed by sections 3.2, 3.3, and 3.4, which present the results

associated with the potential output growth rate and the time-to-build effect, the output gap,

and the Bayesian model comparison and averaging, respectively.

3.1 Dynamic hysteresis effects

Figure 1 presents the main results regarding the estimated dynamic hysteresis effect HEt. The

evolution of HEt is strongly robust and consistent across models with different structures and

prior settings. For example, by comparing the results obtained from the HCUC and the HUC

models it is possible to observe that allowing for the innovations to be correlated does not affect

the estimation of the dynamic hysteresis effect. Overall, significant downward movements in

HEt are observed during recessions.

Interestingly, the estimated cycle-generated movements lead to more important permanent

drops in potential output only after the 1970s. Specifically, before 1970 a fall in HEt during a

recession was always followed by a rise of similar magnitude. This immediate recovery implies

that potential output was not permanently affected. In other words, although ct did affect τt

via HEt, potential output always went back to its pre-recession growing trajectory. Hence,

the definition of hysteresis effects that emphasizes permanent losses in potential output is not
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supported for this period. After the 1970s, however, the previously strong recovery pattern is

no longer present: recession-induced losses in potential output growth become permanent since

then. In figure 2 in section 3.1 of the online appendix, we also plot the cumulative hysteresis

effect, showing that the drop in
∑T

s=1HEs clearly occurs in the early 1970s. Indirectly, this

finding offers evidence supporting the literature that considers 1973 as another structural break

date for the US real GDP growth (see for example Grant and Chan, 2017).

The result above also confirms some of the findings of Furlanetto et al. (2021) and Benatti and

Lubik (2022), who documented hysteresis for the US output mainly after, not before, the early

1980s, using different identification strategies. Following both studies, we also conducted three

sub-sample exercises using 1970, 1980, and 1990 as the cut-off periods. The results presented in

the online appendix show that there is only mild parameter instability when 1970 was selected as

the cut-off point. Because HEt is the sum of product terms (βict−i) as defined in equation (7),

the different hysteresis effect coefficients in the early sample mean that the different behavior

of HEt pre- and post-1970s is unlikely caused by parameter instability, but rather by a change

in the dynamics of the output gap. Thus, the sub-sample exercises further support our finding

that the interaction between ct and τt experienced a change in the early 1970s.

Additionally, it may be possible to argue that the absence of hysteresis effects before the 1970s

was due to the more frequent and short-lived recessions. However, this view is not supported by

the data. First, all models but H2CUC have a constant β. If earlier data points affecting β are

in favor of a strong recovery, they should at least reduce the fall in HEt post-1970s, which is at

odds with the estimated evolution ofHEt. Second, the H
mCUC model considers a shorter period

(from 1961:Q1 to 2022Q3), and still yields a fairly similar HEt compared to the other HCUC

models. Third, the real-time recessions (OECD recessions) used in the HlCUC model have a

higher frequency throughout the period—see the shaded area in the right panel of Figure 2, but

this model still yields a fairly similarHEt. Figure 2 further supports this finding by showing that

the results obtained from the HsCUC model do not depend on any pre-determined recessions:

the estimated recession probability regime switches follow closely the NBER recessions (closer

than the OECD recessions used in the HlCUC model), only missing the recession of the early

1960s.

It is also important to point out that, when we allow for the possibility of positive hysteresis
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Figure 1: Dynamic hysteresis effect obtained from all models. We report the posterior median and

90% credible intervals of HEt. The estimated HEt shows the total effect of past cycles on potential

output over time. Shaded areas indicate NBER recessions dates.
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Figure 2: Estimated recession probability regimes obtained from the HsCUC model. Posterior

mean of recession probability regimes estimated from the HsCUC model. Shaded areas indicate

NBER recession dates (left) and OECD recession dates (right).
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Figure 3: Dynamic hysteresis effect obtained from the H2CUC model. The H2CUC model allows for

two different effects of the cycle on potential output: during recessions and expansions. Left: HEt

during recessions. Right: HEt during expansions.
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effects, the estimated HEt obtained from the H2CUC model is still fairly similar to the one

obtained from the HCUC model. This is more clearly shown in Figure 3, which shows the

hysteresis effects associated with both recessions and expansions. While the recession-induced

HEt follows closely the HEt obtained from the HCUC model, the expansion-induced HEt is

essentially zero with the wide credible band covering zero. This highlights the lack of statistical

evidence supporting positive hysteresis effects in the post-World War II period.16

Table 2 reports the estimates of β obtained from the different models. Given the similarity

between the estimated dynamic hysteresis effects, it may be counterintuitive to observe that

the parameters are different across the models. Nevertheless, this can be explained by noticing

that the estimation of ct, unlike the estimated HEt, is less robust to the models’ structures.17

Importantly, all HCUC models but the HUC model show that
∑4

i βi > 0. Since the output

gap is expected to be negative during a recession, this result highlights the existence of relevant

hysteresis effects according to the great majority of the estimated models.

To check for posterior significance, we conduct a joint Bayesian test for no hysteresis effects:

H0 : β = 0 vs. H1 : β ̸= 0. Following Kass and Raftery (1995), we compare the marginal data

likelihood (MDL) under H1 to the one under H0 using the Bayes factor (BF1,0):

BF1,0 =
p(y|H1)

p(y|H0)
=
p(β = 0|y)
p(β = 0)

.

The right-hand side of the equation above is the Savage-Dickey density ratio that equals the ratio

of the posterior ordinate at zero (the hypothesized value) to the prior ordinate at zero.18 The

posterior p(β|y) can be obtained from the MCMC samples; whereas the prior p(β) is Gaussian,

as specified in section 2.3.2. Thus, we compute the log Bayes factors for all models and compare

them with the scale reported in Kass and Raftery (1995).

These results are reported at the bottom of table 2. From the latter it is possible to conclude

that there is decisive evidence against β = 0 for all models, which is consistent with the results

plotted in figure 1 and with the fact that we found that
∑4

i βi > 0.

16The only exception is the decade-long expansion in the 1960s, where the posterior mean of the expansion-induced
HEt does not include zero. This is partly consistent with the increase in the probability of an expansion regime
estimated by the HsCUC model, as shown in Figure 2. However, this probability is only approximately 0.5.

17We return to this discussion in section 3.3.
18The Savage-Dickey density ratio simplifies Bayesian testing for nested models, but it cannot be used for model

comparison. In section 3.4 and in the online appendix, we derive formulas for computing the MDL of the
proposed HCUC models.

21



Table 2: Hysteresis effect coefficients

HCUC HUC H2CUC HlCUC HsCUC HmCUC

β1 0.57 (0.22)
[0.32, 0.88]

−0.75 (0.30)
[−1.15,−0.40]

0.39 (0.20)
[0.230, 0.77]

0.03 (0.13)
[−0.14, 0.19]

0.73 (0.19)
[0.53, 0.94]

0.28 (0.20)
[0.13, 0.47]

β2 0.46 (0.23)
[0.23, 0.81]

−0.13 (0.25)
[−0.46, 0.17]

0.34 (0.16)
[0.09, 0.50]

0.19 (0.16)
[0.14, 0.39]

0.36 (0.28)
[0.13, 0.62]

0.81 (0.30)
[0.42, 1.17]

β3 0.71 (0.26)
[0.39, 1.02]

−0.27 (0.15)
[−0.58,−0.13]

− −0.17 (0.14)
[−0.28,−0.09]

−0.13 (0.23)
[−0.44, 0.18]

0.22 (0.28)
[−0.13, 0.59]

β4 −0.02 (0.20)
[−0.28, 0.25]

−0.17 (0.18)
[−0.30,−0.09]

− 0.12 (0.12)
[0.05, 0.23]

−0.24 (0.13)
[−0.37,−0.14]

−0.49 (0.23)
[−0.78,−0.22]

Bayesian joint test H0 : β = 0

logBF1,0 11.23 12.08 9.82 7.15 9.64 18.57

Notes: We report the posterior medians, standard deviations in parentheses, and the 90% credible intervals in

square brackets. Bold numbers indicate that the respective coefficient’s credible interval does not include zero. The

Bayesian joint test is based on the log Bayes factor computed by the Savage-Dickey density ratio. A value larger

than 5 implies decisive evidence against the H0.

3.2 Decline in potential output growth and the time-to-build effect

The first two columns of table 3 summarize the estimates of µ1 and µ2, or the potential output

growth rates before and after the break in 2007:Q1 identified by Grant and Chan (2017).19 We

also include the results obtained from the standard UC and CUC models, besides the six models

that allow for hysteresis effects. The HCUC model presents slightly higher median potential

output growth rates compared to the CUC model: 3.8% (3.4%) before the 2007:Q1 break and

2.9% (1.7%) after. Thus, although the post-break growth rate rate is still lower than the pre-

break rate, the decline is smaller. To illustrate this point further, the left panel of figure 4 shows

the posterior distribution of the growth differential, p(µ2 − µ1|y). It is possible to observe that

the inclusion of the hysteresis effect reduces the difference. However, the 90% credible intervals

of the differentials in all HCUC models still exclude zero, which means that hysteresis effect

can potentially explain about 50% of the decline in potential output growth discussed in the

literature on secular stagnation (see, for example, Gordon, 2015; Antolin-Diaz et al., 2017; Li

and Mendieta-Muñoz, 2020). A similar result is shown in the last column of table 3, which

19Following the standard approach, we report the annualized growth rate.
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computes the total decline in the potential output growth rate proxied by γT − γ1. The decline

in potential output growth is a robust finding across all model variants.

Table 3 shows two further important results. First, the different models yield similar estimates

of τ0. This is important because it shows that the unobserved components estimated from the

HCUC models are not sensitive to the initialization parameters. Moreover, the COVID-19 effect

is nearly identical across all model’s variants, suggesting that our results are robust to this

distortion (see the fifth column in table 3). Although we estimated the pandemic effect as a

single outlier, its magnitude of -8.1% is very close to the -8.3% reported by Berger et al. (2023),

who used a different modeling approach with a much larger information set.

Second, regarding the posterior estimate of the innovation correlation coefficient ρ that is

attributed to the time-to-build effect, we find that, similar to Morley et al. (2003) and Grant

and Chan (2017), the CUC model exhibits a high correlation coefficient, pointing to a single-

source error dynamics.20 However, when hysteresis effects are included, the correlation is reduced

to -0.67 according to the HCUC model and to -0.5 according to the HmCUC model, for example.

Indeed, the right panel of figure 4 shows that all HCUC models present a lower ρ compared to the

CUC model. Since the time-to-build effect refers to the contemporaneous output gap response to

a positive technology (supply) shock, a model without hysteresis effects can erroneously identify

every recession with a positive change in potential output, and every expansion with a negative

change in potential output, which affects the estimates of the output gap. We observe that

models that allow for both hysteresis effects and innovation correlation yield a lower correlation

coefficient due to the different timing assumed for each of the effects. The following section

shows that, by doing this, the counterintuitive output gap estimates derived from the CUC

model can be improved.

3.3 Output gap

Since output gap estimation is one of the main reasons why unobserved components models have

gained considerable popularity, we believe that it is important to discuss the results obtained

20It is possible to interpret this result as evidence that the time-to-build effect is the sole driver of business
cycle fluctuations, so there is no demand-driven transitory movements in output. Morley et al. (2003) provide
similar arguments from a statistical point of view. However, one can also think of this as a “correlation puzzle”
because most new-Keynesian models have difficulties rationalizing the nearly perfect negative correlation. In
this sense, it is difficult to believe either conceptually or empirically that all recessions are always associated
with positive technology shocks.
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Table 3: Annualized potential output growth rate, the time-to-build effect, and
the COVID-19 effect

4× µ1 4× µ2 ρ COVID τ0 4× (γT − γ1)

UC 3.38 (0.15)
[3.21, 3.57]

1.62 (0.38)
[1.14, 2.08]

− −8.08 (0.51)
[−8.71,−7.42]

761.3 (0.81)
[760.2, 762.3]

−1.78 (0.42)
[−2.31,−1.26]

CUC 3.36 (0.35)
[2.93, 3.83]

1.66 (0.66)
[0.83, 2.52]

−0.88 (0.04)
[−0.92,−0.83]

−8.14 (0.51)
[−8.78,−7.44]

761.1 (0.70)
[760.3, 762.0]

−1.69 (0.79)
[−2.62,−0.71]

HCUC 3.79 (0.31)
[3.39, 4.19]

2.94 (0.43)
[2.34, 3.50]

−0.67 (0.06)
[−0.74,−0.59]

−8.05 (0.56)
[−8.72,−7.34]

760.7 (0.72)
[759.8, 761.6]

−1.74 (0.75)
[−2.52,−0.94]

HUC 3.67 (0.25)
[3.39, 3.95]

2.60 (0.37)
[2.11, 3.08]

− −8.01 (0.54)
[−8.70,−7.32]

760.8 (0.79)
[759.8, 761.8]

−1.68 (0.66)
[−2.21,−1.05]

H2CUC 3.79 (0.45)
[3.36, 4.08]

2.93 (0.73)
[2.52, 3.57]

−0.72 (0.07)
[−0.80,−0.62]

−8.09 (0.58)
[−8.81,−7.30]

760.9 (0.64)
[760.0, 761.6]

−1.72 (0.87)
[−2.24,−1.01]

HlCUC 3.48 (0.61)
[3.30, 3.89]

2.23 (0.55)
[1.84, 2.80]

−0.62 (0.07)
[−0.71,−0.52]

−8.19 (0.72)
[−9.09,−7.28]

760.9 (0.83)
[759.1, 762.6]

−1.75 (0.81)
[−2.28,−1.13]

HsCUC 3.58 (0.96)
[3.31, 3.82]

2.17 (1.02)
[1.41, 2.84]

−0.74 (0.10)
[−0.85,−0.59]

−8.08 (0.55)
[−8.79,−7.40]

760.7 (0.90)
[759.6, 761.8]

−1.83 (1.17)
[−2.71,−1.26]

HmCUC 3.59 (0.49)
[2.98, 4.18]

2.61 (0.66)
[1.82, 3.53]

−0.53 (0.07)
[−0.59,−0.44]

−8.17 (0.49)
[−8.83,−7,57]

807.5 (0.71)
[806.6, 808.4]

−1.32 (0.97)
[−2.16,−0.51]

Notes: We report the posterior medians, standard deviations in parentheses, and the 90% credible intervals in

square brackets. The estimation period for the HmCUC model is 1961:Q1-2022:Q3. For the rest of the models, the

estimation period is 1941:Q1-2022:Q3.
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Figure 4: Differences in annualized potential output growth rates and the time-to-build effect
before and after 2007:Q1. Left: The posterior median distributions of the potential growth

rates, µ2 − µ1, obtained from the different models. Right: The posterior median distributions of the

innovation correlation coefficients, ρ, for the different models. All results are summarized by the range

(vertical bar), the 90% posterior interval (circles), and the median (diamond).
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Figure 5: Output gap estimates. We report the posterior medians and the 90% credible intervals of the

estimated output gap ct for each model. The output gap corresponds to the log difference between

observed and potential output. Shaded areas indicate NBER recessions dates.

from the proposed HCUC models. The posterior distribution of the cycle ct is shown in figure

5. The eight estimates can be classified into three main groups: UC, CUC, and HCUC models.

The UC output gap is similar to the one obtained from the Hodrick-Prescott filter, which has

been extensively discussed (Harvey and Shephard, 1993; Durbin and Koopman, 2012). On the

other hand, the CUC model (popularized by the works of Morley et al., 2003, Sinclair, 2009, and

Grant and Chan, 2017, among others) is closely related to the Beveridge-Nelson decomposition

(Beveridge and Nelson, 1981), and it seems to yield a counterintuitive estimate of the economists’

understanding of cyclical fluctuations. Consider the 2007-9 Global Financial Crisis (GFC), for

example. At the beginning of the recession, ct experiences an important increase, and during

the course of the recession it falls to zero.

There are two possible explanations for this result. First, the high correlation coefficient

between innovations or time-to-build effect. Second, the excess trend volatility ση reported in

table 4. These effects imply that, when a recession takes place, the fall in output is largely
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attributed to the trend component due to ση > σϵ. To compensate for the sudden fall in τt,

the large negative correlation coefficient ρ causes an increase (rather than a decrease) in ct as a

result. As mentioned above, this “negative time-to-build effect” is hard to justify theoretically,

and it also contradicts some of the literature that shows that the GFC generated a large negative

demand shock, at least at the beginning of the recession—see, e.g., Bashar (2011), Adrian et al.

(2019), and Eo and Morley (2022). Similarly, the CUC output gap increases at the beginning of

the COVID-19 recession, which is, again, due to the combined effect of a negative time-to-build

effect and a higher trend volatility.

We point out that the HUC output gap is close to the one obtained from the CUCmodel. Using

equation (8), it can be shown that, if the cycle follows an AR(2) process, an HUC model with

ctβ and another one with ct−1β affecting the dynamics of γt in (5) yield an identical reduced-

form ARIMA(2,1,2) representation of the CUC model. For these three models, equation (9)

matches three structural parameters, either (σ2η, σ
2
ϵ , β) or (σ2η, σ

2
ϵ , ρσησϵ), with the first three

autocovariances in the reduced-form MA errors. This suggests that, even if the HUC model

includes an extra lag in HEt, its CUC-equivalent reduced-form estimates only the time-to-build

effect. Hence, including either the hysteresis effect or the time-to-build effect in the estimation

is insufficient to generate models that satisfactorily capture output dynamics.21

Therefore, by introducing simultaneously the hysteresis effect and the correlation between

innovations via different timings, the HCUC models effectively alleviate this tension and yield

more consistent and intuitive output gap estimates. This can be summarized by three results.

Firstly, the estimated output gaps are robust across the different HCUC models.

Secondly, the implied cycle periodicity (or the inverse of the implied cycle frequency), reported

in table 4 (column four) shows that the UC model yields approximately 6.9 years between

recessions, largely in line with the economists’ understanding of the business cycle frequency;

whereas the CUC and the HUC model yield a periodicity of less than two years.22 This is, again,

due to the large negative correlation coefficient and excess trend volatility that make the cycle

persistence very low. If the standard CUC model is augmented with hysteresis effects as in the

HCUC model, the estimated persistence leads to a two-year increase in cycle periodicity.

21This also explains why
∑4

i βi in the HUC model is negative, as shown in table 2.
22For a stationary AR(2) process with complex roots, the implied periodicity can be computed from its spectral

density (see also Harvey and Shephard, 1993 and Hasenzagl et al., 2022). For quarterly data, the implied cycle
periodicity in number of years is 0.5π/ arccos(ϕ1/

√
−4ϕ2).
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Table 4: Autoregression coefficients and standard deviation of the innovations

ϕ1 ϕ2 Period∗ ση σϵ p(ση > σϵ|y)

UC 1.49 (0.09)
[1.38, 1.60]

−0.56 (0.10)
[−0.68,−0.43]

6.90 (3.13)
[4.81, 14.67]

0.55 (0.09)
[0.41, 0.64]

0.60 (0.09)
[0.50, 0.74]

0.381

CUC 0.68 (0.15)
[0.51, 0.91]

−0.30 (0.11)
[−0.44,−0.15]

1.81 (0.92)
[1.51, 2.38]

1.37 (0.11)
[1.22, 1.51]

0.90 (0.16)
[0.74, 1.13]

0.942

HCUC 0.83 (0.10)
[0.70, 0.97]

−0.19 (0.09)
[−0.33,−0.08]

3.76 (1.86)
[2.91, 6.28]

0.95 (0.11)
[0.83, 1.12]

0.88 (0.12)
[0.72, 1.08]

0.655

HUC 1.09 (0.14)
[0.91, 1.27]

−0.58 (0.13)
[−0.74,−0.41]

1.93 (1.29)
[1.37, 3.73]

0.50 (0.06)
[0.43, 0.57]

0.41 (0.08)
[0.32, 0.51]

0.813

H2CUC 1.03 (0.18)
[0.81, 1.33]

−0.32 (0.08)
[−0.40,−0.22]

3.62 (2.18)
[2.15, 6.60]

0.93 (0.10)
[0.75, 1.03]

0.81 (0.15)
[0.61, 1.01]

0.688

HlCUC 1.17 (0.16)
[0.97, 1.40]

−0.36 (0.12)
[−0.53,−0.27]

4.15 (1.66)
[3.08, 7.21]

0.85 (0.08)
[0.68, 1.20]

0.53 (0.12)
[0.39, 0.72]

0.723

HsCUC 1.21 (0.12)
[1.08, 1.50]

−0.48 (0.16)
[−0.61,−0.28]

3.28 (2.46)
[1.87, 5.22]

1.05 (0.13)
[0.91, 1.30]

0.89 (0.17)
[0.63, 1.11]

0.704

HmCUC 1.41 (0.10)
[1.29, 1.64]

−0.47 (0.08)
[−0.56,−0.36]

4.87 (2.75)
[3.18, 9.46]

0.61 (0.07)
[0.52, 0.74]

0.83 (0.15)
[0.65, 1.10]

0.240

Notes: We report the posterior medians, the standard deviations in parentheses, and the 90% credible intervals in

square brackets.
* Refers to the implied cycle periodicity computed from the complex AR polynomial roots. The few MCMC iterations

associated with real roots of the AR polynomial were discarded. The values reported refer to number of years.

Thirdly, the HCUC models mitigate the excess trend volatility by allocating part of the trend

volatility to past cyclical fluctuations via dynamic hysteresis effects. For the same level of

variation in potential output growth, the models reduce ση, so that the posterior probability of

excess trend volatility is also reduced, as shown by the last column of table (4).

Lastly, we highlight two features regarding the HmCUC model. First, the output gap

generated by this model can be considered as a measure of the business cycle corresponding to

the common factor among nominal, real, and financial variables. As shown in figure 5, the

credible error band of ct obtained from this model is narrower, suggesting that the output gap

is estimated more accurately when we use an extended information set, as predicted by Forni

et al. (2000) and Bai (2003). Second, table (4) shows that the posterior probability of excess

trend volatility in this model is even lower than in the UC model, which suggests that most of
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the variation in output comes from the cycle and not from its long-run potential level.

3.4 Model comparison and averaging

From a Bayesian estimation approach, the MDL provides a direct way to assess model

uncertainty by showing how likely the observed data is generated by a specific model. For a

given model M with trend τ , cycle c, and static parameter vector θ, the MDL is given by

p(y|M) =

∫
p(y|θ,M)p(θ|M)dθ ≈ 1

N

N∑
i

p(y|θ(i),M), (15)

where p(θ|M) is the prior distribution; and p(y|θ,M) =
∫
p(y|c,θ)p(c|θ)dc is the integrated

likelihood. The last term in equation (15) is the Monte Carlo integration, which is an unbiased

estimator of p(θ|M) where θ(i), i = 1, ..., N , is a draw from its prior.

In the online appendix, we show that the integrated likelihood for the HCUC, the H2CUC, and

the HlCUC models can be derived following Grant and Chan (2017). The integrated likelihood

includes functions of the sparse band matrices B andKc from (13) and (14). We use the efficient

band matrix routine in Chan and Jeliazkov (2009) to calculate the integrated likelihood, which

is the main element for computing the MDL in equation (15).23

To compute the MDL of the nonlinear HsCUC model, we consider a sequential Monte Carlo

procedure, the details of which are also presented in the online appendix. For the multivariate

HmCUC model, we consider the conditional data likelihood p(y|y2), with y2 collecting variables

other than the log real GDP. The associated conditional integrated likelihood is
∫
p(y|y2, c)dc,

and it can be readily computed given the linear and Gaussian model structure.

Table 5 summarizes the results by reporting the log Bayes factor of model M relative to the

UC model, which corresponds to logBFM,UC = log p(y|M) − log p(y|UC).24 Considering the

period 1961:Q1-2022Q3 and N = 10, 000, we find that log p(y|UC) = −344.76. The table shows

that there is decisive evidence in favor of both the hysteresis effect and correlated innovations,

with the former generating a more important marginal likelihood improvement. Also, with

the exception of the HmCUC model, additional model structure does not seem to improve

considerably the model fit of the US real GDP, as seen by the smaller log Bayes factor obtained

23The routine developed by Chan and Jeliazkov (2009) is considerably faster than the Kalman filter.
24It is also possible to interpret these results as the log MDL distance to the UC model. This means that model

M is exp(logBFM,UC) times more likely than the UC model given the data.
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Table 5: Model comparison

UC CUC HCUC HUC H2CUC HlCUC HsCUC HmCUC

Log Bayes factor relative to the UC model : logBFM,UC

0 5.86 16.07 11.42 14.48 13.50 15.83 16.31

Posterior model probability : P (M |y)

0 0 0.30 0 0.06 0.02 0.24 0.38

Notes: We report the log Bayes factor of a specific model M relative to the UC model. The posterior model

probability is computed by assuming that every model is equally likely a priori. A value larger than 5 implies

decisive evidence in favor of model M .

from the HUC, H2CUC, HlCUC, and HsCUC models relative to the HCUC model. This finding

is consistent with the similar dynamic hysteresis effect and output gap estimates obtained from

all these models, as presented in figures 1 and 5.

Since the incorporation of both hysteresis effects and the time-to-build effect via different

timings is empirically important, we proceed to compute the posterior distribution using

Bayesian model averaging (BMA) (Kass and Raftery, 1995), i.e., the average of posterior

distributions from different models weighted by their posterior model probabilities:

p(M |y) ∝ p(y|M)p(M).

Assuming that all models are equally likely a priori, the posterior is simply proportional to the

MDL. Therefore, we can compute the posterior model probabilities using the log Bayes factors.

We report these at the bottom of table 5. Interestingly, the results show that: (i) the US real

GDP is best described by the HmCUC, HCUC, and the HsCUC models; and (ii) the CUC and

HUC models receive smaller weights compared to the models where ρ ̸= 0 and β ̸= 0.

Finally, using the Bayes rule, the BMA posterior distribution of x can be constructed as:

pBMA(x|y) =
m∑
i=1

p(Mi|y)p(x|y,Mi), (16)

where x is either the output gap or the dynamic hysteresis effect, m is the total number of

models, and draws from pBMA(x|y) consist of draws from p(x|y,Mi) with probability p(Mi|y).
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Figure 6: Average dynamic hysteresis effect and output pap for all HCUC models. Reported

are the Bayesian model averaging (BMA) posterior medians and the 90% credible intervals of the

estimated dynamic hysteresis effect and the output gap obtained from the HCUC models. Shaded

areas indicate NBER recessions dates.

Figure 6 shows the dynamic hysteresis effect and output gap obtained from the BMA for

the HCUC models according to equation (16), considering the period 1961:Q1-2022:Q3. The

evolution of both components largely confirms the previous findings obtained from the baseline

HCUC model. Notice that the credible intervals of both the hysteresis effect and the output

gap estimates are now narrower than the ones for the HCUC model shown in figures 1 and 5,

respectively, so that the uncertainty associated with the estimation of the hysteresis effect and

output gap can be further reduced via BMA.

4 Policy implications

Perhaps the most important finding presented in the previous section is that hysteresis effects

have become more relevant for the US economy since the early 1970s, so that recessions have

progressively affected the evolution of potential output growth since then.25 This result provides

further relevance to the growing research that has begun to explore the implications of hysteresis

effects for welfare analysis (Tervala, 2021) and for the optimal implementation of fiscal policy

(Engler and Tervala, 2018; Tervala and Watson, 2022) and monetary policy (Garga and Singh,

2021; Acharya et al., 2022; Fatás and Singh, 2022; Gaĺı, 2022).

25A comprehensive discussion and modeling of the social and economic reasons that ultimately explain this
result is beyond the scope of our article. However, the channels emphasized by Benigno and Fornaro (2018)—
namely, weak aggregate demand that affect agents’ expectations of future growth—and Herrendorf et al. (2014)
and Duernecker et al. (2021)—i.e., the structural transformation of the US economy and the reallocation of
economic activity across the broad sectors agriculture, manufacturing, and services—can help to identify the
underlying causes of the changing relevance of hysteresis effects in future research.
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To summarize, since our findings support the presence of hysteresis effects, aggressive and

timely stabilization policies—both fiscal and monetary, conventional and

unconventional—should be prioritized during recessions. This conclusion resonates with Yellen

(2016) and has three immediate implications for the future behavior of policy makers. First,

overall, inflation stabilization during recessions must be considered of secondary importance.

This is extremely relevant because, as shown by Tervala (2021), the welfare costs of recessions

are considerably larger if hysteresis effects are explicitly modeled.26

Second, both fiscal and monetary policies can play an important role to decrease the

deleterious effects associated with hysteresis effects. With respect to the former, Engler and

Tervala (2018) and Tervala and Watson (2022) show that in the presence of hysteresis: (i) the

fiscal output multiplier is much larger and the welfare multiplier of fiscal policy—that is, the

consumption equivalent change in welfare for one dollar change in public spending—is positive;

and (ii) public investment possesses larger output and welfare multipliers than government

transfers and public consumption. This implies that temporary fiscal stimulus—mainly

associated with public investment—have high output and welfare multipliers that help limit

the long-run damages of recessions on potential output by strengthening the recoveries.27

Regarding the relevance of monetary policy, it is possible to highlight the following for an

hysteresis-prone economy: (i) given the zero lower bound, the study of unconventional policies

that can alleviate the relevant commitment concerns faced by the central bank is a promising

agenda for future research (Garga and Singh, 2021); (ii) the timing of monetary policy matters

significantly for long-run outcomes because timely commitment to future accommodative

policy early in a recession can prevent hysteresis from happening and enable a swift recovery

(Acharya et al., 2022); (iii) since potential output becomes harder to define, the central bank

faces significant challenges if monetary policy is not aggressive enough in response to adverse

demand shocks (Fatás and Singh, 2022); and (iv) optimal monetary policy requires a more

aggressive stabilization of output (unemployment) than the one implied by a conventional

interest rate rule, and monetary policy strategies that put too much weight on inflation

stabilization can be inefficient (Gaĺı, 2022). Thus, the presence of hysteresis has two main

26Specifically, Tervala (2021) focuses on total factor productivity hysteresis—i.e., demand-driven changes in
employment that can permanently affect total factor productivity in a New Keynesian model.

27Alternatively, this implies that, during weak economic conditions, the detrimental effects of fiscal consolidation
are considerable because of the presence of hysteresis effects.

31



implications for the current implementation of monetary policy: (i) central bankers should

respond aggressive enough to adverse demand shocks, perhaps via unconventional monetary

policies; and (ii) delayed monetary policy interventions may be powerless to bring the economy

back to full employment since these generate policy errors that can be larger and more difficult

to amend in the future.

Third, the stabilization policies discussed above can also have an important role to play to

counteract the decline in potential output growth found by the literature on secular stagnation—

see, for example, Gordon (2015), Fernald et al. (2017), Antolin-Diaz et al. (2017) and Li and

Mendieta-Muñoz (2020), among others. In other words, both fiscal and monetary policies are

likely to be beneficial for long-run economic growth rates in the US if implemented appropriately

during future recessions.

5 Conclusions

This article presents novel models and methods aimed at estimating the long-run effects

associated with recessions over time, i.e., dynamic hysteresis effects. By incorporating different

timings in the structure of unobserved components models, we show that it is possible to

disentangle the long-run adverse effects associated with recessions from other relevant effects

that may also exist when studying the interactions between cycles and trends in output—such

as time-to-build effects in the context of CUC models. The proposed baseline model is called

the HCUC model, which explicitly captures two relevant features of an economy: it

incorporates non-neutrality in the long-run by introducing dynamic hysteresis effects and it

considers time-to-build effects by modeling the correlation between permanent and transitory

innovations. We also provide extensions of the HCUC model by developing models that: (i)

separate the effects of recessions and expansions; (ii) consider a real-time recession indicator;

(iii) introduce nonlinear effects via Markov regime switching; (iv) consider a multivariate

framework; and (v) contain alternative priors.

Using Bayesian estimation methods, we find two main results that are robust across all

estimated models for the US economy. First, recessions have reduced potential output growth

since the early 1970s, so that hysteresis effects have become more relevant to understand the

dynamics of output since then. Second, compared to CUC models, the HCUC models: (i)
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estimate a lower correlation coefficient between permanent and transitory innovations—that is,

a smaller time-to-build effect; (ii) yield more consistent and intuitive output gap estimates;

and (iii) improve the model fit of the US real GDP according to Bayesian model comparison

methods. These results emphasize the increasing importance of studying cyclical long-run

non-neutral effects and stress that our understanding of the interactions between cycles and

trends can be improved by considering the hysteresis and time-to-build effects as two different

economic phenomena.

33



References

Acharya, S., Bengui, J., Dogra, K., and Wee, S. L. (2022) “Slow recoveries and unemployment
traps: Monetary policy in a time of hysteresis.” Economic Journal 132, 2007-2047.

Adrian, T., Boyarchenko, N., and Giannone, D. (2019) “Vulnerable growth.” American
Economic Review 109, 1263-1289.

Aghion, P., Akcigit, U., and Howitt, P. (2015) “Lessons from Schumpeterian growth theory.”
American Economic Review 105, 94-95.

Antolin-Diaz, J., Drechsel, T. and Petrella, I. (2017) “Tracking the slowdown in long-run GDP
growth.” Review of Economics and Statistics 99, 343-356.

Bai, J. (2003) “Inferential theory for factor models of large dimensions.” Econometrica 71,
135-171.
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González-Astudillo, M. and Roberts, J. M. (2022) “When are trend-cycle decompositions of
GDP reliable?” Empirical Economics 62, 2417-2460.

35



Gordon, R. J. (2015) “Secular stagnation: A supply-side view.” American Economic Review
105, 54-59.

Grant, A. L. and Chan, J. C. (2017) “A Bayesian Model Comparison for Trend-Cycle
Decompositions of Output.” Journal of Money, Credit and Banking 49, 525-552.

Gyomai, G., and Wildi, M. (2013) “OECD Composite Leading Indicators for G7 Countries:
A Comparison of the Hodrick-Prescott Filter and the Multivariate Direct Filter Approach.”
OECD Statistics Working Papers 2012-5.

Hamilton, J. D. (1989) “A new approach to the economic analysis of nonstationary time series
and the business cycle.” Econometrica 57, 357-384.

Harvey, A. C. and Shephard, N. (1993) “Structural time series models.” In Maddala, G. S., Rao,
C. R., and Vinod, H. D. (Eds.) Handbook of Statistics 11, 261-302.

Hasenzagl, T., Pellegrino, F., Reichlin, L., and Ricco, G. (2022) “A Model of the Fed’s view on
inflation.” Review of Economics and Statistics 104, 686-704.
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Li, M. and Mendieta-Muñoz, I. (2020) “Are long-run output growth rates falling?”
Metroeconomica 71, 204-234.
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1 Detailed sampling procedure

1.1 Sample τ , c|y,θ in the HCUC model

The leftmost matrix in equation (11) of the main text is invertible. This is so because H1 and

Hϕ are invertible. By multiplying the inverse of the matrix on both sides and using the block

inversion formula we get

τ

c

∣∣∣∣∣θ ∼ N


α̃
0

 ,

Ωτ Ωτc

Ω′
τc Ωc


 , (1)

where α̃ = H−1
1 α and

Ωτ = σ2
η(H

′
1H1)

−1 − ρσησϵ
(
H−1

1 Hβ(H
′
1Hϕ)

−1 + (H ′
ϕH1)

−1(H−1
1 Hβ)

′)
+ σ2

ϵH
−1
1 Hβ(H

′
ϕHϕ)

−1(H−1
1 Hβ)

′,

Ωτc = ρσησϵ(H
′
ϕH1)

−1 − σ2
ϵH

−1
1 Hβ(H

′
ϕHϕ)

−1,

Ωc = σ2
ϵ (H

′
ϕHϕ)

−1.

Considering a multivariate normal distribution, the prior distribution of c|θ is its marginal

distribution given by N(0,Ωc) = N(0, σ−2
ϵ (H ′

ϕHϕ)
−1). Using standard properties of the

multivariate Gaussian distribution, it follows immediately that

τ |c,θ ∼ N
(
α̃+ΩτcΩ

−1
c c,Ωτ −ΩτcΩ

−1
c Ω′

τc

)
.

Using y|c = τ |c + c, we get y|c,θ ∼ N
(
H−1

1 α+H−1
1 Bc, (1− ρ2)σ2

η(H
′
1H1)

−1
)

with

B =
ρση

σϵ
(Hϕ −Hβ) +H1, as shown in the main text. The conditional likelihood also follows

immediately.

1.2 Sample ϕ|y, c, δ,σ in the HCUC model

The parameter ϕ enters the model only by affecting the dynamics of ct, i.e., Hϕc = ϵ. We write

this as

c = Cϕ+ ϵ, (2)
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which is a regression in ϕ with a T × p design matrix C whose i-th column is (c1−i, ..., cT−i)
′,

i = 1, ..., p. From equation (1), we have:

ϵ|y, c, δ,σ ∼ N
(
b, (1− ρ2)σ2

ϵ IT

)
, b =

ρσϵ
ση

(H1y + (Hβ −H1)c−α).

Given the prior p(ϕ) specified in the main text, standard Bayesian regression results yield:

ϕ|y, c, δ,σ ∼ N

(
K−1

ϕ

(
µϕ +

1

(1− ρ2)σ2
ϵ

C ′(c− b)

)
,K−1

ϕ

)
1{λ̄(Φ)<1},

where Kϕ = IT + 1
(1−ρ2)σ2

ϵ
C ′C. The necessary truncation within the stationary region is

obtained by the acceptance-rejection method.

1.3 Sample δ|y, c,ϕ,σ in the HCUC model

Let −Hβc be written as Γβ, where Γ is a T × k matrix whose i-th column, i = 1, ..., k, is given

by (01×i,1{1∈R}c1, ...,1{T−i∈R}cT−i,)
′. From equations (5) and (11) in the main text we have:

H1τ = l0τ0 + l1µ1 + l1µ2 + Γβ + η = Xδ + η, (3)

where X = (l0, l1, l2,Γ) with l0 =
(
1,01×(T−1)

)′
, l1 =

(
11×(t0−1),01×(T−t0+1)

)′
, l2 = 1T×1 − l1.

From (1), η|y, τ ,ϕ,σ ∼ N(ρσηHϕc/σϵ, (1 − ρ2)σ2
ηIT ). Given the prior p(δ) in the main text,

standard Bayesian regression results yield:

δ|y, c,ϕ,σ ∼ N

(
K−1

δ

(
(V δ)−1µδ +

1

(1− ρ2)σ2
η

X ′
(
H1τ − ρση

σϵ
Hϕc

))
,K−1

δ

)
,

where Kδ = (V δ)−1 + 1
(1−ρ2)σ2

η
X ′X.

1.4 Sample σ|y, c, δ,ϕ in the HCUC model

Notice that η = H1τ +Hβc − α and ϵ = Hϕc. The conditional likelihood of ζ = (η′, ϵ′)′ is

similar to the one in the CUC model studied by Grant and Chan (2017). We first derive the
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density of ζ. By completing the square, equation (4) in the main text implies

p(ζ|σ) ∝ (σ2
ϵ )

−T
2 exp

(
− 1

2σ2
ϵ

T∑
t=1

ϵ2t

)(
(1− ρ2)σ2

η

)−T
2 exp

(
− 1

2(1− ρ2)σ2
η

T∑
t=1

(
ηt −

ρση
σϵ

ϵt
)2)

∝
(
(1− ρ2)σ2

ησ
2
ϵ

)−T
2 exp

(
− 1

2σ2
ϵ

z3 −
1

2(1− ρ2)σ2
η

(
z1 −

2ρση
σϵ

z2 +
ρ2σ2

η

σ2
ϵ

z3
))

, (4)

where z1 = η′η, z2 = η′ϵ, and z3 = ϵ′ϵ.

On the other hand, p(ζ|σ) in (4) can be used to factorize the conditional posteriors of σ2
ϵ , σ

2
η,

and ρ. Considering the uniform priors used for these parameters in the main text, the posterior

is proportional to the respective likelihood. Let A/a for a ∈ A denote the the complement of a

in A. We have:

p(σ2
η|y, c, σ2

ϵ , ρ) ∝ (σ2
η)

−T
2 exp

(
− 1

2(1− ρ2)σ2
η

(
z1 −

2ρση
σϵ

z2 +
ρ2σ2

η

σ2
ϵ

z3
))

,

p(σ2
ϵ |y, c, σ2

η, ρ) ∝ (σ2
ϵ )

−T
2 exp

(
− 1

2σ2
ϵ

z3 −
1

2(1− ρ2)σ2
η

(
z1 −

2ρση
σϵ

z2 +
ρ2σ2

η

σ2
ϵ

z3
))

,

p(ρ|y, c, σ2
ϵ , σ

2
η) ∝ (1− ρ2)−

T
2 exp

(
− 1

2(1− ρ2)σ2
η

(
z1 −

2ρση
σϵ

z2 +
ρ2σ2

η

σ2
ϵ

z3
))

.

This step is implemented by a simple Griddy-Gibbs step: we use a fine grid defined by the

bounds of the uniform prior to evaluate and normalize the above expressions into empirical

cumulative distribution functions (cdf). With a draw from U(0, 1), we then choose the largest

grid point whose empirical cdf is smaller than the draw—that is, the inverse-transform method.

1.5 Sample s|y, c, δ,ϕ,σ, q in the HsCUC model

Let st ∈ {1, 0} denote the state at t that indicates if hysteresis effect is active, for t = 1, ..., T .

We design a single-move sampler for posterior computation. By combining (2) and equation (4)

in the main text we have:

ϵ = c−Cϕ, ηt|c,σ ∼ N

(
ρση
σϵ

ϵt, (1− ρ2)σ2
η

)
.

Using the result above and (3), conditional on y, c, δ, ϕ, and σ we have

y∗ = Sc+ η∗, η∗ ∼ N(0, (1− ρ2)σ2
ηIT ), (5)
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where y∗ = H1(y − c)− l0τ0 − l1µ1 − l1µ2 − ρση

σϵ
(c−Cϕ), and S is a T × T matrix whose t-th

row takes the form

[
01×(t−k−1) st−kβk . . . st−2β2 st−1β1 01×(T−t+1)

]
.

Notice two important results: (i) the first row of S contains only zeros since the hysteresis

effect means that the cycle should affect the trend with lags, indicating that only s1, ..., sT−1

are identifiable; and (ii) st only enters the likelihood of y∗t+1, ..., y
∗
t+k in (5) (with the obvious

simplification for st with t > T − k). For example, with k = 3, we have

y∗2 = s1β1c1 + 0 + 0 + 0 + η∗2,

y∗3 = s1β2c1 + s2β1c2 + 0 + 0 + η∗3,

y∗4 = s1β3c1 + s2β2c2 + s3β1c3 + 0 + η∗4,

y∗5 = 0 + s2β3c2 + s3β2c3 + s4β1c4 + η∗5.

This observation facilitates a single-move sampler that recursively computes

p(s|y, c, δ,ϕ,σ, q) ∝ p(y∗|s, c,σ)p(s|q)

via the factorization

p(st|y, c, δ,ϕ,σ, q, s/st) ∝ p(y∗t+1, ..., y
∗
t+k|st, ct−k+2, ..., ct+k−1,σ)p(st+1|st, q)p(st|st−1, q),

where q = (q00, q11)
′ defines the transition probability of the Markov process st. The likelihood—

that is, the first term on the right-hand side—is Gaussian and given by

y∗t+1, ..., y
∗
t+k|st, ct−k+1, ..., ct+k−1,σ ∼ N



y∗t+1 −

∑k
i=1 st−i+1βict−i+1

...

y∗t+k −
∑k

i=1 st−i+kβict−i+k

 , (1− ρ2)σ2
ηIk

 .

Assuming that the current value in the Markov chain is soldt (for s/soldt , we suppress the

superscript), we generate a new draw snewt from p(st|st−1, q), that is, a Bernoulli variate. The
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acceptance rate is given by:

min

[
p(y∗t+1, ..., y

∗
t+k|snewt , ct−k+2, ..., ct+k−1,σ)p(st+1|snewt , q)p(snewt |st−1, q)p(s

old
t |st−1, q)

p(y∗t+1, ..., y
∗
t+k|soldt , ct−k+2, ..., ct+k−1,σ)p(st+1|soldt , q)p(soldt |st−1, q)p(snewt |st−1, q)

, 1

]
.

The above single-move Metropolis-Hastings (MH) algorithm is completed recursively for all t.

1.6 Sample q|s in the HsCUC model

We initialize the Markov regimes by setting st ∼ Ber(1 − q̄0), where (q̄0, 1 − q̄0)
′ denote the

stationary distribution of the two-state Markov process st. Equivalently, the latter is the

eigenvector of Q′, where

Q =

 q00 1− q00

1− q11 q11

 .

With this initialization, the Dirichlet distribution is no longer conjugate. This requires a MH

step. Specifically, candidate draws qnew00 and qnew11 are generated by:

(qnew00 , 1− qnew00 )′ ∼ Dir

(
e1 +

T−1∑
t=2

1{st−1=0,st=0}, e2 +

T−1∑
t=2

1{st−1=0,st=1}

)
,

(1− qnew11 , qnew11 )′ ∼ Dir

(
e2 +

T−1∑
t=2

1{st−1=1,st=0}, e1 +

T−1∑
t=2

1{st−1=1,st=1}

)
,

respectively. With the candidate draw, we can compute q̄new0 . The draw is then accepted with

probability

min

[
s
1−q̄new0
1 (1− s1)

q̄new0

s
1−q̄old0
1 (1− s1)q̄

old
0

, 1

]
.

2 A small Monte Carlo study

Basistha (2007) and González-Astudillo and Roberts (2022) documented that more precise

estimates of the trend-cycle correlation coefficient and a more accurate output gap can be

obtained by using a bivariate model. Both Basistha (2007) and González-Astudillo and

Roberts (2022) also discussed that a univariate model tends to overestimate the correlation

coefficient and attributes more output variation to the trend rather than to the cycle, or

ση > σϵ, a result also found in Morley et al. (2003) and Grant and Chan (2017).

Following these contributions, we considered a multivariate model and a Bayesian model
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averaging exercise in the main text. Our main message in this regard is that this overestimation

may be a result of omitting the hysteresis effects, besides the identification issues (which can

be mitigated by using multivariate information). Regarding the latter, Oh et al. (2008) showed

that there is a set of equivalent UC models, with or without trend-cycle correlation, that yields

the same reduced-form ARIMA representation for a univariate time series. The intrinsic tension

in terms of identification comes from the MA components in the reduced form (derived from

the cycle dynamics) and the correlation term, as we discuss in the main text (see also Trenkler

and Weber, 2016 and Li and Mendieta-Muñoz, 2021). The proposed HCUC model is fully

identified in the finite sample under the conditions specified in the main text, which are satisfied

by the logarithm of US real GDP. Consequently, the overestimation of the correlation coefficient

does not represent a problem, as can be observed by the similar results obtained from the

multivariate HmCUC model. This result is also supported by Oh et al. (2008)’s result that,

when the data generating process (DGP) has zero trend-cycle correlation, both the CUC model

and the Beveridge-Nelson decomposition generate an output gap that is fairly similar to the

HP-filtered cycle or a standard UC model.

To examine more thoroughly if our baseline HCUC model tends to overestimate ρ, we consider

a small Monte Carlo study with several data features that mimic the logarithm of US real GDP.

We set T = 300 data points (our sample is composed of T = 303 quarterly data). We choose

ϕ1 = 1.3 and ϕ2 = −0.5, which implies a periodicity of 3.88 years, i.e., somewhere between

the values obtained from the UC model and the CUC model. We modified the following data

features:

1. A five-quarters recession occurs every mi quarters, with i = 1, 2, 3 and m1 = 5, m2 = 15,

and m3 = 25.

2. ση = wiσϵ, with σϵ = 0.5 and w1 = 0.5, w2 = 1, and w3 = 5.

We set ρ = 0 throughout the exercise to focus on the overestimation issue, as in Basistha (2007),

Oh et al. (2008), and González-Astudillo and Roberts (2022). For each “mi +wj” combination,

we simulate 100 datasets and conducted the estimation following the same algorithm described

in the main text. The whole estimation process takes a bit less than 2 hours on a laptop with

24 CPU workers.
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Figure 1: Trend-cycle correlation coefficient (above) and rescaled signal-to-noise ratio (below).
Each rectangular cloud plot contains 100 bars, with each bar containing all posterior draws for a

simulated dataset. The x-axis shows the mi+wj combination, i, j = 1, 2, 3, which indicates the Monte

Carlo setup. The red line indicates the true DGP value.

As mentioned above, it is often observed that the overestimation of ρ is associated with the

tendency to attribute output variation to trend volatility ση. Hence, we report all sampled draws

of v = ση/σϵ/w, where a value close to 1 suggests correct estimation, whereas a value larger

than 1 indicates overestimation of trend volatility under the simulation with signal-to-noise

ratio w. Figure 1 shows the posterior draws of the trend-cycle correlation ρ and the rescaled

signal-to-noise ratio v, relative to their theoretical values.

The figure reveals two interesting results. First, the proposed HCUC model seems to also

overestimate ρ, as the CUC model studied by Basistha (2007) and González-Astudillo and

Roberts (2022), among others, but only for the case of excessively frequent recessions and low

trend volatility. Hence, when the frequency of recessions decreases—that is, when it is closer

to the actual frequency of recessions defined by the NBER, the inclusion of the hysteresis effect

helps to mitigate the overestimation issue, as found for m2 + w1 and m3 + w1. This further

supports our finding shown in Figure 4 in the main text.

Second, we notice that ση tends to be overestimated when the trend volatility is low, a result

also emphasized by Oh et al. (2008) and Grant and Chan (2017). This result suggests that the
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“pile-up” problem pointed out by Stock and Watson (1998) is likely due to the omission of trend-

cycle correlation. However, a caveat of any CUC model is that the inclusion of such correlation

tends to overshoot the trend volatility. Thus, our simulation study makes it clear that, for the

HCUC model, the overestimation issue is mainly associated with the frequency of recessions

(as seen by the results obtained when m2 and m3, compared to ones obtained when m1). The

reason for this is that the dynamic hysteresis effects in the proposed model remain active for 9

quarters, as illustrated in Table 1 of the main text. Yet, with a new recession occurring before

the completion of the dynamic hysteresis effect (that is, under m1), there exists contradicting

information that identify the hysteresis effect coefficients. Consequently, the variation in the

output gap is underestimated, thus increasing the trend volatility.

In sum, if the frequency of recessions is (unrealistically) high, the proposed HCUC model may

run into finite-sample issues if the recession periods or number of activation periods (i.e., the

value of k) is not extended accordingly. However, given the much lower frequency of recessions

in the US as defined by the NBER, we are confident that our HCUC model provides accurate

estimates with sound inference.

3 Additional estimation results

3.1 Complementary empirical results

Figure 2 below shows the cumulative hysteresis effects for all models. Following also the results

reported in the main text, the hysteresis effect begins after the early 1970s, with a negative

output gap decreasing potential output in recessions.

It may be possible to attribute the absence of positive hysteresis effects after 1970, compared

to the “bouncing back” of HEt observed in Figure 1 of the main text, to the selection of 2

quarters exceeding NBER recessions used in our definition of extended recession periods. To

examine the robustness of our results to different definitions of extended recession periods R, we

also consider dynamic hysteresis effects estimated from models that incorporate more quarters

after the end of the NBER recessions. Results are illustrated in Figure 3. It is clear that the

estimated paths of the dynamic hysteresis effect do not alter our conclusion. Together with the

results of other variants of the baseline model reported in main text—especially the H2CUC,

HlCUC, and the HsCUC models, which also feature hysteresis effects outside R, the figure
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Figure 2: Cumulative hysteresis effect. We report the posterior median and 90% credible intervals of

CHEt =
∑t

s=1 HEs. CHEt shows the cumulative permanent loss due to cyclical movements. Shaded

areas indicate NBER recession dates.

provides additional evidence supporting the emergence of hysteresis effects after 1970.

Recently, several authors, including Furlanetto et al. (2021) and Benati and Lubik (2022),

have also found hysteresis effects that predominantly appear after 1980. Our results provide

complementary evidence supporting these studies. Due to the activation and the deactivation

of hysteresis effects across time, our HCUC model (and its variants) allows for the hysteresis

coefficients, i.e. βi’s, to capture various dynamic evolutions, as illustrated in Table 1 in the

main text. To examine parameter stability, we follow the literature and conduct different sub-

sample robustness checks, using 1970:Q1, 1980:Q1, and 1990:Q1 as cut-off points. Table 1 shows

the estimation results. Interestingly, the results corroborate the main results obtained from the

model that considered the full sample, as reported in Table 2 of the main text, the only exception

being that the pre-1970 sample yields different coefficient estimates. This result echoes with our

finding that hysteresis effects took place mainly after 1970—which implies that, before then,

negative output hysteresis tended to be compensated by subsequent positive output hysteresis.

Overall, the sub-sample checks corroborate that the full-sample hysteresis effects are largely

influenced by the post-1970 output dynamics.
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Figure 3: Hysteresis effect with different definitions of R. We report the posterior median and 90%

credible intervals of HEt, estimated using models with the extended recession periods R. The latter

were defined as those spanning the NBER recessions but also covering 2 quarters before and 4 quarters

(left) or 8 quarters (right) after the end of NBER recessions. The red dotted line indicates the posterior

median of HEt for the HCUC model reported in the main text. Shaded areas indicate NBER recession

dates.

Table 1: Hysteresis effect coefficients obtained from the HCUC model for
different sub-samples

Cut-off 1970:Q1 1980:Q1 1990:Q1
Pre Post Pre Post Pre Post

β1 0.36 (0.28)
[−0.08, 0.71]

0.72 (0.24)
[0.44, 1.07]

0.46 (0.18)
[0.26, 0.72]

0.51 (0.31)
[0.19, 0.91]

0.62 (0.27)
[0.39, 0.94]

0.52 (0.20)
[0.34, 0.86]

β2 0.23 (0.14)
[0.04, 0.41]

0.38 (0.20)
[0.11, 0.62]

0.37 (0.19)
[0.15, 0.66]

0.41 (0.28)
[0.14, 0.76]

0.55 (0.31)
[0.20, 0.93]

0.48 (0.25)
[0.19, 0.74]

β3 −0.17 (0.08)
[−0.31,−0.03]

0.46 (0.22)
[0.18, 0.83]

0.33 (0.16)
[0.15, 0.77]

0.82 (0.19)
[0.57, 1.01]

0.50 (0.31)
[0.14, 0.96]

0.76 (0.22)
[0.44, 1.08]

β4 −0.11 (0.06)
[−0.21, 0.00]

−0.04 (0.15)
[−0.24, 0.18]

0.10 (0.31)
[−0.26, 0.47]

−0.08 (0.24)
[−0.37, 0.18]

0.15 (0.47)
[−0.40, 0.72]

−0.07 (0.25)
[−0.33, 0.20]

Notes: We report the posterior medians, standard deviations in parentheses, and the 90% credible intervals in

square brackets. Bold numbers indicate that the respective coefficient’s credible interval does not include zero.

Three split-sample experiments are conducted with 1970:Q1, 1980:Q1, and 1990:Q1 as the cut-off points, respectively.
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Figure 4: Posterior trace and ACF obtained from the HCUC model. Reported are the posterior

traces and ACFs of ση, σϵ, and ρ . Both posterior statistics are computed after burn-in and thinning.
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Figure 5: Posterior trace and ACF obtained from the H2CUC model. Reported are the posterior

traces and ACFs of ση, σϵ, and ρ. Both posterior statistics are computed after burn-in and thinning.

3.2 Mixing of the Markov chain

To evaluate the mixing property of the MCMC algorithm, we report the posterior trace and

autocorrelation function (ACF) of σ2
η, σ

2
ϵ , and ρ for all models with correlated innovations and

dynamic hysteresis effect, after burn-in and thinning. These are reported in figures 4 through 8.

We focus on these parameters because they are the least efficiently estimated among all models’

parameters.

From the reported ACFs, it can be seen that the mixing of the chain is satisfactory, as shown

by the fast decaying patterns. Among all models, the HsCUC models seems to be the least

efficiently estimated; whereas the HmCUC models appears to show superior mixing efficiency.
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Figure 6: Posterior trace and ACF obtained from the HlCUC model. Reported are the posterior

traces and ACFs of ση, σϵ, and ρ. Both posterior statistics are computed after burn-in and thinning.
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Figure 7: Posterior trace and ACF obtained from the HsCUC model. Reported are the posterior

traces and ACFs of ση, σϵ, and ρ. Both posterior statistics are computed after burn-in and thinning.
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Figure 8: Posterior trace and ACF obtained from the HmCUC model. Reported are the posterior

traces and ACFs of ση, σϵ, and ρ. Both posterior statistics are computed after burn-in and thinning.
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Table 2: Mixing of the Markov chain for the proposed models

HCUC H2CUC HlCUC HsCUC HmCUC

Maximum IEF among model parameters
τ0 3.72 4.20 4.46 8.34 3.55
µ 2.10 3.98 6.51 6.24 2.60
ϕ 3.43 4.59 2.64 10.57 4.66
ση 9.34 8.27 6.48 13.40 3.81
σϵ 9.22 11.52 9.37 16.84 5.07
ρ 7.51 8.65 7.00 13.23 5.02
β 4.12 4.50 5.33 8.92 6.71
{ct} 13.85 11.27 7.06 15.45 8.29
{st} - - - 17.59 -
q - - - 12.74 -

Notes: The table summarizes the mixing property of the Markov chain for all models with correlated trend and

cycle innovations and hysteresis effect via the maximum IEF among grouped parameters shown on the left column.

Results are based on every 5-th draw from the 70,000 MCMC samples with the first 20,000 burn-in periods discarded.

We also report the corresponding inefficiency factor (IEF) in table 2, together with some other

relevant models’ parameters. The IEF is the number of draws needed to achieve the same

inferential accuracy as that of independent draws. Thus, a smaller IEF is preferred, see, e.g.,

Chib and Greenberg (1995) for an introduction.

Table 2 shows that the static parameters in all models are efficiently estimated, with an implied

effective sample size (ESS) larger than 10% of the MCMC sample size (Chib and Greenberg,

1995). The only exception is the HsCUC model, where the maximum IEF of ϕ and σ is slightly

above 10, suggesting a less-than-10% ESS. Given our MCMC sample size of 10,000 after burn-in

and thinning, the posterior distribution of σϵ (the one with the largest IEF) is still composed

of more than 590 effective sample points. Thus, we do not consider this to be a major issue.

One potential explanation for this may be associated with the use of a single-move sampler for

{st}∞t=1 and a MH algorithm for q in the HsCUC model. As shown by the inferior IEF for

st’s, the possibly low acceptance rate of snewt contributes to increased correlation among MCMC

samples. However, with an IEF of 17, the ESS amounts to 580, rendering the performance of

the developed algorithm acceptable. An interesting future research may look into more efficient

algorithms that sample unobserved switching regimes in the UC framework, where switching

dynamics similar to the ones proposed in the main text are more complex than the Markov

switching state space models studied by Kim (1994).
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4 Integrated likelihood

4.1 Integrated likelihood for the HCUC, the H2CUC, and the HlCUC models

The integrated likelihood can be derived by completing the square. Let us denote

k =
(
2πσ2

ησ
2
ϵ (1− ρ2)

)−T
2 for each specific model. For instance, using equations (13) and (14) in

the main text, we have the following for the HCUC model:

p(y|θ) = k

∫
exp

(
− 1

2(1− ρ2)σ2
η

(H1y −α−Bc)′(H1y −α−Bc)

)
exp

(
− 1

2σ2
ϵ

c′H ′
ϕHϕc

)
dc

= k exp

(
−1

2

[
1

(1− ρ2)σ2
η

(H1y −α)′(H1y −α)− b′cK
−1
c bc

])
×
∫

exp

(
−1

2
(c−K−1

c bc)
′Kc(c−K−1

c bc)

)
dc

= k |Kc|−
1
2 exp

(
−1

2

[
1

(1− ρ2)σ2
η

(H1y −α)′(H1y −α)− b′cK
−1
c bc

])
,

where bc = (σ2
η − ρ2σ2

η)
−1B′(H1y − α); and B and Kc are the sparse band matrices defined

in the main text. The marginal data likelihoods for the other univariate and linear model’s

variants can be constructed in an identical way.

4.2 Integrated likelihood for the HsCUC model

Notice that the HsCUC model is conditionally linear and Gaussian: given st, t = 1, ..., T −1, the

model is linear and Gaussian. Thus, it can be handled by using the Kalman filer to integrate

out the trend or the cycle. In other words, in the integrated likelihood

p(y|θ) =
∫ ∫

p(y, c|θ, s)p(s|θ)dcds,

the inner integrand p(y, c|θ, s) can be computed using prediction error decomposition via the

Kalman filter. Suppressing the dependence on the static parameter vector θ, we have

∫
p(y, c|θ, s)dc = p(y1)

T∏
t=2

p(yt|Ft−1)p(v1;F1)
T∏
t=2

p(vt(s1:t−1);Ft(s1:t−1)),

where Ft denotes the information set up to t (i.e., the natural filtration generated by

{s1:t, ϵ1:t, η1:t}), such that s1:t−1 = {s1, ..., st−1}, and vt is the (conditionally) independent
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prediction error yt − Et−1(τt + ct) with variance Ft obtained from the Kalman filter such that

vt ∼ N(0, Ft) for all t. Notice that v1 and F1 do not include st as s1 only appears at t = 2 via

the effect of c2 on τ1. This means that an unbiased estimator of the integrated likelihood (used

to compute the log Bayes factor in the main text) is given by

p̂(y) =
p(v1;F1)

M

M∑
i=1

T−1∏
t=2

p(vt(s
(i)
1:t−1);Ft(s

(i)
1:t−1)),

where s
(i)
1:t−1, i = 1, ...,M , are drawn from p(s) (i.e., the bootstrap particle filter; see, e.g.,

Doucet et al., 2001). This factorization is essentially a Rao-Blackwellization step that reduces

the high-dimensional integral by the Kalman filter, a technique called mixture Kalman filter by

Chen and Liu (2000) used in a class of martingale unobserved components models (Shephard,

2015)—more examples can be found in Li and Mendieta-Muñoz (2020) and Li and Koopman

(2021).

By pointing out that p(s) = p(s1)
∏T−1

t=2 p(st|st−1), the evaluation of p̂(y) can be done

sequentially via sequential Monte Carlo methods (Doucet et al., 2001). Usually, p(st|st−1) is

replaced by some proposal density for efficiency, but considering that st is only binary, we

adopt the simplest method by using p(st|st− 1) directly.

First, we set up the conditional state space representation of the HmCUC model:

yt = Zαt,

αt = T (s1:t−1)αt−1 +Rζt, ζ ∼ N(0,Σ),

where ζt = (ηt, ϵt)
′ and Σ are defined by equation (4) in the main text; and αt collects the trend

and cycle whose transition dynamics is determined by T (s1:t−1), a predetermined matrix given
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s1:t−1. Specifically, we have

T (s1:t−1) =



1 0 0 0 0 0 . . . 0

µ11{t<t0} + µ21{t≥t0} 1 β1st−1 β2st−2 β3st−3 β4st−4 . . . βkst−k

0 0 ϕ1 ϕ2 0 0 . . . 0

0 0 1 0 0 0 . . . 0

0 0 0 1 0 0 . . . 0

0 0 0 0 1 0 . . . 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 . . . 1 0



,

and αt, R, and Z are given by

αt =



1

τt

ct

ct−1

ct−2

ct−3

...

ct−k+1



, R =



0 0

1 0

0 1

0 0

0 0

0 0

...
...

0 0



, Z ′ =



0

1

1

0

0

0

...

0



.

Second, the algorithm for computing (the unbiased estimate of) the integrated likelihood is

shown below:

1. At t = 1, let a1 = (1, τ0 + µ1,01×k)
′ and P 1 = RΣR′.

– Sample ᾱ
(i)
1 ∼ N(a1,P 1), i = 1, ...,M . This is the same as considering (τ

(i)
1 , c

(i)
1 )′ ∼

N((τ0 + µ1, 0)
′,Σ) and setting all pre-sample cycles to zero.

– Compute the prediction error and associated variance matrix for i = 1, ...,M :

v
(i)
1 = y1 −Zᾱ

(i)
1 ,

F
(i)
1 = ZP 1Z

′.
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– Record the likelihood contribution for i = 1, ...,M , and their mean and variance:

w
(i)
1 =

1√
2πF

(i)
1

exp

(
−(v

(i)
1 )2

F
(i)
1

)
, ŵ1 =

1

M

M∑
i=1

w
(i)
1 , ŝ2w1

=
1

M − 1

M∑
i=1

(w
(i)
1 − ŵ1)

2.

– Estimate the log-likelihood contribution with bias correction (see Li and Koopman,

2021 for an explanation):

l̂1 = log p̂(y1) = log ŵ1 +
ŝ2w1

2Mŵ2
1

.

– Normalize the likelihood contribution for i = 1, ...,M :

W
(i)
1 =

w
(i)
1∑M

i=1w
(i)
1

.

2. At t = 2, sample M particles:

s
(i)
1 ∼ Ber(1− q̄0), i = 1, ...,M.

Form T (s
(i)
1 ) for i = 1, ...,M . Run the Kalman update.

– Compute the Kalman gain:

K
(i)
1 =

T (s
(i)
1 )P 1Z

′

F
(i)
1

.

– Compute the Kalman filter:

ᾱ
(i)
2 = T (s

(i)
1 )ᾱ

(i)
1 +K

(i)
1 v

(i)
1 ,

P
(i)
2 = T (s

(i)
1 )P 1(T (s

(i)
1 )−K

(i)
1 Z)′RΣR′,

v
(i)
2 = y2 −Zᾱ

(i)
2 ,

F
(i)
2 = ZP

(i)
2 Z ′.
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– Record the likelihood contribution for i = 1, ...,M , and their mean and variance:

w
(i)
2 = W

(i)
1

1√
2πF

(i)
2

exp

(
−(v

(i)
2 )2

F
(i)
2

)
, ŵ2 =

1

M

M∑
i=1

w
(i)
2 , ŝ2w2

=
1

M − 1

M∑
i=1

(w
(i)
2 −ŵ2)

2.

– Estimate the log-likelihood contribution with bias correction:

l̂2 = log p̂(y2|F1) = log ŵ2 +
ŝ2w2

2Mŵ2
2

.

– Normalize the likelihood contribution for i = 1, ...,M :

W
(i)
2 =

w
(i)
2∑M

i=1w
(i)
2

.

– Compute the particle ESS:

Γ2 =
1∑

(W
(i)
2 )2

.

– If Γ2 < 0.75M , resample with replacement M particles (see Doucet et al., 2001 for

generic treatments of resampling in particle filters):

{s(i)1 ,T (s
(i)
1 ), ᾱ

(i)
2 ,P

(i)
2 , v

(i)
2 , F

(i)
2 } ∝ W

(i)
2 ,

and set W
(i)
2 = 1/M .

3. At t ≥ 3, sample M particles:

s
(i)
t−1 ∼ P (s

(i)
t−1|s

(i)
t−2), i = 1, ...,M.

Form T (s
(i)
1:t−1) for i = 1, ...,M . Run the Kalman update.

– Compute the Kalman gain:

K
(i)
t−1 =

T (s
(i)
1:t−1)P

(i)
t−1Z

′

F
(i)
t−1

.
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– Compute the Kalman filter:

ᾱ
(i)
t = T (s

(i)
1:t−1)ᾱ

(i)
t−1 +K

(i)
t−1v

(i)
t−1,

P
(i)
t = T (s

(i)
1:t−1)P1(T (s

(i)
1:t−1)−K

(i)
t−1Z)′RΣR′,

v
(i)
t = yt −Zᾱ

(i)
t ,

F
(i)
t = ZP

(i)
t Z ′.

– Record the likelihood contribution for i = 1, ...,M , and their mean and variance:

w
(i)
t = W

(i)
t−1

1√
2πF

(i)
t

exp

(
−(v

(i)
t )2

F
(i)
t

)
, ŵt =

1

M

M∑
i=1

w
(i)
t , ŝ2wt

=
1

M − 1

M∑
i=1

(w
(i)
t −ŵt)

2.

– Estimate the log-likelihood contribution with bias correction:

l̂t = log p̂(yt|Ft−1) = log ŵt +
ŝ2wt

2Mŵ2
t

.

– Normalize the likelihood contribution for i = 1, ...,M :

W
(i)
t =

w
(i)
t∑M

i=1w
(i)
t

.

– Compute the particle ESS:

Γt =
1∑

(W
(i)
t )2

.

– If Γt < 0.75M , resample with replacement M particles:

{sit−1, T (s
(i)
t−1), ᾱ

(i)
t ,P

(i)
t , v

(i)
t , F

(i)
t } ∝ W

(i)
t ,

and set W
(i)
t = 1/M .

4. The total log-likelihood is given by

log p̂(y) =

T∑
t=1

l̂t.
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This is then used for computing the log Bayes factor for model comparison and Bayesian

averaging, as discussed in the main text. In our implementation, we set M = 10, 000. We also

point out that, due to the discrete state values that the latent Markov process st can assume,

resampling occurs rarely, which is evidence in favor of an efficient sequential Monte Carlo

algorithm.
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