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1 Introduction
The Great Recession (GR) has raised concerns about the possibility that advanced economies are
entering an era of secular stagnation, that is, an era characterised by a slowdown in the rate of
growth of long-run GDP. The estimation of long-run output is, however, surrounded by
considerable uncertainty because its conceptualisation reflects the ongoing controversy regarding
the origins of economic fluctuations. The present paper studies the evolution of a measure of
long-run output growth, the rate of growth of output consistent with a constant unemployment
rate. The latter can be identified with a measure of long-run GDP growth because it represents the
sum of labour force and labour productivity growth. The methodology adopted also allows the
computation of the long-run growth rate of labour productivity by separating the effects derived
from movements in the rate of growth of the labour force (labour input).

We estimate both long-run growth rates for the G-7 countries during the post-war era using
time-varying parameter models that incorporate stochastic volatility and a Heckman-type two step
estimation procedure that deals with the possible endogeneity problem in the econometric models.
In this way, the mean and the variance of the growth rates are allowed to drift gradually over time
in order to capture the changes in the volatility of output that have taken place during the post-war
period (i.e., the “Great Moderation”), which allows to characterise the possible uncertainty around
the estimates.

The main results obtained can be summarised as follows. First, we document a significant
decline in long-run output and labour productivity growth rates. With respect to output growth
rates, the fall ranges from approximately -8.6 percentage points in Japan to approximately -1.6
percentage points in the United Kingdom. Regarding labour productivity growth rates, the fall
ranges from approximately -8.3 percentage points in Japan to -1.6 percentage points in Italy.
Because our approach identifies two main sources of economic growth —labour force growth and
labour productivity growth, these results suggests that the slowdown in labour productivity has
been the main driver of the decline in GDP growth. Second, besides the smoothed estimates of
stochastic volatility —generated using all information available in the sample, the particle filter
applied to the time-varying parameter models allows the computation of one-sided estimates
—generated using real-time information, which can be considered real-time estimates of the
latent processes. This allows to characterise the evolution of long-run growth rates before and
after the GR. The results obtained from both estimates are similar, so that the largest decline in
growth rates does not seem to be associated with the detrimental effects derived from the GR.

This article is closely related to recent studies that have documented a reduction in different
measures of long-run output growth in advanced economies and that have tried to decompose long-
run GDP growth into its main drivers (Antolin-Diaz et al. , 2017; Benati , 2007; Fernald , 2015;
Fernald et al. , 2017; Gordon , 2010; 2012; 2014a;b; 2016). It is possible to summarise the main
findings of these studies as follows:

1. There has been a gradual decline, rather than a discrete break, in different estimates of long-
run output growth in developed countries.

2. The slowdown in long-run output predated the GR. With respect to the USA, Fernald et al.
(2017: 30) have argued that “the US economy suffered a deep recession superimposed on a
sharply slowing trend”.
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3. The decline in the growth rate of labour productivity appears to be behind the slowdown in
long-run output growth in the USA. Benati (2007), Fernald (2015) and Gordon (2012;
2014a;b; 2016) describe the evolution of productivity growth in the USA as follows: high
levels of productivity in the 1950s and 1960s as a consequence of the inventions derived
from the second industrial revolution (airplanes, air conditioning, interstate highways);
productivity growth slowed down after 1973; information technology (the third industrial
revolution: computers, the web, mobile phones) created only a short-lived productivity
growth revival from mid-1990s and early 2000s; and productivity growth slowed again
before the GR and it has practically vanished during the past decade.1

4. More recently, Cette et al. (2016) and Antolin-Diaz et al. (2017) have shown that the
weakening in labour productivity prior to the GR also appears to be a global phenomenon.

We see our paper as extending this literature. Specifically, our approach is similar to that of
Gordon (2010; 2014b), who pointed out that Okun’s law can be used to identify the breakdown
of trend growth and changes in cyclical fluctuations despite the simplicity of the approach and
the restrictive assumptions. However, our econometric procedures emphasise the importance of
stochastic volatility and the possible endogeneity problems that stem from the estimation of the
reduced-form models. On the other hand, Antolin-Diaz et al. (2017) have stressed the importance
of changing volatility for describing long-run growth in the context of a dynamic factor model that
incorporated four business cycle variables measured at quarterly frequency (output, consumption,
investment and aggregate hours worked) and a set of 24 monthly indicators. Relative to this study,
our methodology is simple in terms of the number of variables employed, which allows, first, to
derive a clear interpretation of long-run output and labour productivity growth rates; and, second,
to conduct frequentist inference, which is important since the treatment of stochastic volatility in
Bayesian models can be subject to strong prior beliefs.

The rest of the paper comprises four sections. Section 2 describes the methodology employed.
Section 3 provides a description of the econometric techniques used. The main empirical findings
are presented and discussed in Section 4. Finally, Section 5 summarises the main conclusions and
mentions some potentially relevant areas for future research.

2 Okun’s law and long-run output growth rates
Our main focus is to study the possible changes in growth rates that have been permanent in nature
(i.e., non-mean-reverting changes), as in Beveridge and Nelson (1981) and Antolin-Diaz et al.
(2017). Therefore, we interpret the long-run as frequencies lower than the business cycle.

Output in time t, Yt , can be represented as follows:

Yt ≡
Yt

Ht

Ht

Nt

Nt

Lt
Lt ≡ rthtntLt , (1)

where Ht , Nt , Lt represent hours worked, total employment, and total labour force, respectively.
Therefore, Yt/Ht = rt , Ht/Nt = ht and Nt/Lt = nt represent labour productivity, hours worked per
worker, and the employment rate, respectively.

1Byrne et al. (2016) have shown that there is little evidence that the slowdown in the growth rates of labour
productivity and total factor productivity arises from growing mismeasurement of the gains from innovation and
information technology-related goods and services.
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Equation (1) can be expressed in growth rates as:

∆ logYt = ∆ logrt +∆ loght +∆ lognt +∆ logLt ,

where ∆ denotes first differences. The expression above can be written as:

gt = r̂t + ĥt + n̂t + l̂t .

where the left-hand side of this equation represents the growth rate of actual output; and the right-
hand side shows the sum of the rates of growth of labour productivity (r̂t), hours worked per worker
(ĥt), the employment rate (n̂t) and the labour force (l̂t). It follows directly that:

n̂t = gt−
(
r̂t + ĥt + l̂t

)
. (2)

On the other hand, equilibrium in the goods market in a growing economy requires that the
growth rate of the supply for goods, gS,t , equals the growth rate of the demand for goods, gD,t , so
that

gS,t = gD,t .

In reality, gS,t and gD,t are not directly observable. However, it is possible to say that the two
components of gS,t are the rate of growth of labour productivity (r̂t + ĥt) and the rate of growth of
the labour force (l̂t); and that gD,t is represented by the actual output growth rate (gt).

This means that it is possible to express (2) as

n̂t = gD,t−gS,t ,

which shows that any disequilibrium in the goods market is captured by the rate of growth of
the employment rate. If the employment rate is constant —so that n̂t = 0, then there is equilibrium
in the goods market —so that gD,t = gS,t and gt = r̂t + ĥt + l̂t .

Let us now denote the unemployment rate at time t as ut :

ut = 1− Nt

Lt
= 1−nt .

If we consider the change in unemployment rate, ∆ut , and the change in the employment rate, ∆nt ,
the expression above can be written as

∆ut =−∆nt =−nt−1

(
nt

nt−1
−1
)
=−nt−1n̂t .

Substituting n̂t = gD,t−gS,t into the equation above yields

∆ut =−nt−1
(
gD,t−gS,t

)
.

And rearranging terms we obtain:

gD,t = gS,t−
1

nt−1
∆ut . (3)
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Finally, assuming that the discrepancy between the left- and right-hand sides of equation (3)
results from an idiosyncratic shock, εt , hitting the underlying economic system, we have the
following time-varying parameter model (TVPM):

gt = β0,t−β1,t∆ut + εt . (4)

Equation (4) depicts the first difference version of Okun’s law using a TVPM, which can be
used as an econometric device for estimating the long-run output growth rate if εt satisfies certain
statistical properties. The β1,t coefficient represents the time-varying Okun coefficient, which
measures the inverse relationship between the change in the unemployment rate and output
growth. More importantly, the variation in gS,t is captured by the parameter β0,t = r̂t + ĥt + l̂t . The
latter represents a measure of the long-run output growth rate composed of the sum of the rates of
growth of labour productivity, r̂t + ĥt , and of the labour force, l̂t , that are independent of aggregate
demand fluctuations. Therefore, if the ut is constant —so that ∆ut = 0, the parameter β0,t can be
interpreted as a “threshold growth rate” which, on a growth path with no changes in the
unemployment rate, would equal the sum of the (potentially time-varying) labour force growth
and productivity growth.

Other studies (IMF , 2010; Klump et al. , 2008; León-Ledesma and Thirlwall , 2002; Mendieta-
Muñoz , 2017; Schnabel , 2002; Thirlwall , 1969) have also identified the rate of growth consistent
with a constant unemployment rate derived from the first difference version of Okun’s law as a
measure of a “potential” or “natural” output growth rate, without focusing on the evolution of the
latter over time. The term “natural” stems from Roy Harrod’s theoretical studies on the business
cycle, who defined the natural rate of growth as the “the maximum rate of growth allowed by the
increase of population, accumulation of capital, technological improvement and the work leisure
preference schedule, supposing that there is always full employment in some sense” (Harrod ,
1939: 30).2

The derivation of the long-run growth rate in equation (4) also allows to compute the
component of the latter associated with productivity growth. Since gS,t = r̂t + ĥt + l̂t , then
gS,t− l̂t = r̂t + ĥt . Thus, it is also possible to estimate the following TVPM:

gt− l̂t = β
∗
0,t−β

∗
1,t∆ut + ε

∗
t . (5)

Equation (5) shows that the parameter β ∗0,t = gS,t − l̂t = r̂t + ĥt represents the long-run growth
rate of labour productivity; β ∗1,t represents the time-varying Okun coefficient that measures the
inverse relationship between the change in the unemployment rate and the rate of growth of
productivity; and ε∗t represents the stochastic disturbance term. As in Antolin-Diaz et al. (2017),
the estimate of β ∗0,t in our framework captures both technological factors and other factors, such
as capital deepening and labour quality.3

2Note that equation (4) reverses the dependent and independent variables in the traditional Okun’s law specification.
Thirlwall (1969) and Barreto and Howland (1993) also justified this by emphasising that reversing the order of the
variables can be used to avoid estimation biases caused by labour hoarding and that the best predictor of the output
growth rate can be found by regressing gt on ∆ut , respectively.

3Note also that the rate of growth of labour productivity is measured here as the rate of growth of output per worker,
which corresponds to r̂t + ĥt . It is also possible to measure the rate of growth of labour productivity as the growth rate
of output per hour worked since r̂t = gS,t − l̂t − ĥt . However, quarterly data for the ĥt series is only available for the
US business sector, so that we only estimated the latter for the US economy.
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3 Econometric techniques
Our main interest consists in estimating the parameters β0,t and β ∗0,t from the TVPMs shown in
equations (4) and (5), respectively. There are two possible problems associated with the estimation
of these models that are necessary to consider.

First, both TVPMs relate output growth rates to changes in the unemployment rate using a
partial equilibrium framework. In an econometric model, however, it is also necessary to include
other dynamics of gt and gt − l̂t that are not explained by ∆ut . To this end, we make the error
dynamics agnostic to possible model misspecification by incorporating moving average error terms
of order 1 (MA(1))4 with stochastic volatility (SV). Thus, we estimated time-varying parameter
models with stochastic volatility (TVPMs-SV) instead of the traditional TVPMs. The TVPMs-SV
satisfied the standard correct specification tests (see below).

Second, it is likely that the TVPMs and the TVPMs-SV present endogeneity problems because
of the possible correlation between ∆ut and the measurement disturbance term, εt . Kim (2006)
shows that the Kalman filter applied to a TVPM leads to invalid inferences of the model (i.e.,
inferences on the hyperparameters and time-varying coefficients or stochastic state variables) using
maximum likelihood (ML) estimation if the regressors are endogenous. This may arise if ∆ut is
correlated with other omitted variables that also affect gt and gt − l̂t .5 In order to correct the
possible endogeneity problem and to obtain consistent estimates of the TVPMs-SV, we employ the
Heckman-type two-step bias correction developed by Kim (2006).

The rest of this section describes the implementation of the TVPMs-SV and the Heckman-type
two-step bias correction method. For simplicity we will consider only the estimation of model (4).

3.1 Time-varying parameter models with stochastic volatility
We propose the following homogeneous TVPM-SV6 composed of the observed variables ∆ut and
gt , and of the unobserved parameters or state vector β0,t and β1,t . The measurement equation of
the model is

gt = β0,t−β1,t∆ut +φεt−1 + εt , t = 2, ...,T, (6)

where εt ∼ N(0,σ2
t ) for all t with the log-variance evolving as a random walk, i.e.

logσt+1 = logσt +σεζt , t = 2, ...,T −1,

where σε is called the volatility of volatility. The state variable β0,t measures the long-run output
growth rate, which follows an integrated random walk or a smooth trend dynamics; whereas the

4It may also be possible to incorporate MA(p) error dynamics, but in our empirical study we find MA(1) error
terms to be sufficient.

5For example, according to Holston et al. (2017), changes in gt are expected to be Granger-caused by the
unobserved inflation gap and the real interest rate gap, via the Phillips curve and the IS curve, respectively. Both
gaps are likely to be correlated with ∆ut since they also measure the phase of the business cycle.

6A state-space model is said to be homogeneous if the variance of measurement disturbances is proportional to
that of the state innovations. See Harvey (1989) for some examples. Homogeneous stochastic volatility models are
parsimonious because they impose a constant signal-to-noise ratio. We also model heterogeneous stochastic volatility
for our model, but no significant difference in the final estimates was found. The results are available upon request.
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time-varying Okun coefficient on unemployment β1,t follows a random walk. Hence,

β0,t+1 = β0,t +βt

βt+1 = βt +λ0σtη0,t

β1,t+1 = β1,t +λ1σtη1,t , t = 2, ...,T −1.
(7)

The parameters λ 2
0 and λ 2

1 in equation (7) are the signal-to-noise ratios (SNR) for β0,t and β1,t .
The innovation terms ζt , η0,t , and η1,t are i.i.d. standard normal random variables for all t.

Because of nonstationarity in the state dynamics, we use diffuse initialisation for the
log-variance and state variables (Koopman , 1997). Note that η0,t and η1,t are permanent shocks
to the system that try to capture possible systematic changes in the time-preferences of
consumers, composition of production factors, and technological development; and that εt
incorporates transitory shocks such as financial crisis and central bank interventions (Laubach and
Williams , 2003).

The choice of the dynamics of β0,t is derived from the study by Harvey (2011) and Holston et
al. (2017), who discover that the logarithm of the US GDP follows an integrated random walk of
order 2. Also, it is agnostic to model specification of gt as we do not need to model a time-varying
mean.

The modelling of SV plays an important role in model specification. For simplicity, let us
illustrate this point by considering only the results for the USA. Figure 1 below shows the cumsum
statistic of squared standardised residuals from the estimated TVPMs-SV and TVPMs. If a model
is correctly specified with respect to the second moment of error terms, the cumulative sum of
squared standardised residuals should be proportional to their total sum, thus laying on a 45 degree
line. This is the case of the TVPMs-SV presented in the left graph of Figure 1 below. On the
contrary, without SV we have a non-constant increase in the cumulated sum, as shown by the
estimation of the TVPMs presented in the right graph below.

[INSERT FIGURE 1 ABOUT HERE]

We also find that, if estimated unrestrictedly, the maximum likelihood (ML) estimate of λ0
tends to zero. This is the “pile-up” or “limited variation” problem documented by Stock and
Watson (1998) and found in other empirical macroeconomic studies. To overcome this, we use
the unbiased median estimator developed in that paper. This requires an auxiliary first-stage model
to determine λ0, after which the other parameters are estimated based on the full model with λ0
fixed. Therefore, our first-stage model is the following TVPM:

gt = β0 +β1,t∆ut +σξ (φξt−1 +ξt),

β1,t+1 = β1,t +σ1η1,t ,
(8)

where ξt and η1,t are i.i.d. standard normal random variables for all t. Based on the exponential
Wald statistic for testing structural breaks with unknown break dates of the constant intercept β0,
we can determine

λ̂0 =
σ̂0

σ̂ξ

,

where σ̂2
0 is the estimated standard deviation of innovation for β0,t if one rejects the null of a

constant intercept.
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In the second-stage, the full model shown in equations (6) and (7) is estimated via simulated
ML estimation with the vector of free parameters θ = (σε ,λ1,φ)

′, keeping λ 2
0 = λ̂ 2

0 (1 + φ 2).
Because of SV the model becomes nonlinear, rendering the Kalman filter infeasible.7

Nevertheless, the model is conditionally linear, meaning that given ht , t = 1, ...,T , the Kalman
filter can integrate out both β0,t and β1,t to calculate the conditional likelihood.

To conduct inference, the simulated ML estimation is based on the numerically accelerated
importance sampling (NAIS) developed by Koopman et al. (2015).8 Denoting Y = {y1, ...,yT},
X = {∆u1, ...,∆uT} and H = {logσ1, ..., logσt}, we can write the likelihood as

L(Y |X ;θ) = g(Y |X ;θ)
∫

H

p(Y,H|X ;θ)

g(Y,H|X ;θ)
g(H|Y,X ;θ)dH

= g(Y |X ;θ)
∫

H
ωθ (H)g(H|Y,X ;θ)dH

, (9)

where p(.) denotes densities related to the true TVPM-SV model (equations (6) and (7)); and g(.) is
an efficient linear and Gaussian importance density constructed using the NAIS.9 The importance
weight is given by

ωθ (H) =
p(Y,H|X ;θ)

g(Y,H|X ;θ)
=

p(Y |X ,H;θ)

g(Y |X ,H;θ)
,

which is a function of the data contained in X , Y and of the parameter vector θ .10 Under regularity
conditions specified in Geweke (1989), we have the following unbiased and consistent Monte
Carlo estimate for the likelihood

L̂(Y |X ;θ) = g(Y |X ;θ)ω̄θ , ω̄θ =
1
M

M

∑
j=1

ωθ (H( j)), (10)

where H( j) is drawn from g(H|Y,X ;θ). In practice, we maximise the bias-corrected simulated
log-likelihood l̂(Y |X ;θ) with respect to θ , where

l̂(Y |X ;θ) = logg(Y |X ;θ)+ log ω̄θ +
M−1
2Mω̄2

θ

M

∑
j=1

(
ωθ (H( j))− ω̄θ

)2
.

For inference, Geweke (1989) argues that if the variance of importance weights exists, we have
a central limit theorem for smoothed estimate of time-varying parameters. Let EY,X(.) and VY,X(.)
denote the smoothed estimate of the mean and variance. For the SV, we have

EY,X(σt) =
M

∑
j=1

ω
∗
θ̂
(H( j))σ

( j)
t ,

VY,X(σt) =
M

∑
j=1

ω
∗
θ̂
(H( j))σ

( j)
t

2
−
(
EY,X(σ

( j)
t )
)2
,

(11)

7Note that without SV the model is a linear Gaussian state space model that can be efficiently estimated using the
Kalman filter.

8See Appendix A.1 for a description.
9Thereby, it is possible to evaluate g(Y |X ;θ) using the Kalman filter and sample H from g(H|Y,X ;θ) using the

simulation smoother of De Jong and Shephard (1995).
10Note that the last equation holds because p(H|X ;θ) = g(H|X ;θ). The former is Gaussian as logσt is a random

walk with Gaussian innovations.
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where ω∗
θ̂
(H( j)) is the normalised importance weight evaluated at the simulated ML estimate θ̂ .

Similarly, for the estimates of β0,t and β1,t we have that

EY,X(βi,t) =
M

∑
j=1

ω
∗
θ̂
(H( j))Ep(βi,t |H( j)),

VY,X(βi,t) =
M

∑
j=1

ω
∗
θ̂
(H( j))Vp(βi,t |H( j))+

M

∑
j=1

ω
∗
θ̂
(H( j))

(
Ep(βi,t |H( j))

)2−
(
EY,X(βi,t)

)2
,

(12)

where i = 0,1. Ep(.|H( j)) and Vp(.|H( j)) are the smoothed mean and variance of βi,t derived from
the Kalman smoother based on the TVPM-SV with H( j) given; and VY,X(βi,t) comes from the law
of total variance.

3.2 Heckman-type two-step bias correction
We employ the Heckman-type two-step bias correction developed by Kim (2006) in order to deal
with the possible endogeneity problem in the TVPMs-SV.11 Suppose that a set of instrumental
variables (IVs) zt ∈ Rp, t = 1, ...,T , is available; and that there is a linear relationship between the
endogenous regressor ∆ut and zt via a standard TVPM. Hence, for t = 1, ...,T ,

∆ut = z′tγt + et , et ∼ N(0,σ2
e ),

γt+1 = γt +ξt , ξt ∼ N(0,Σξ ),
(13)

where γt is a p×1 vector of time-varying parameters with diagonal innovation covariance matrix
Σξ . The orthogonal projection lemma and the Kalman filter allows us to decompose ∆ut into a
predicted value E(∆ut |Ft−1) and an orthogonal prediction error êt :

∆ut = E(∆ut |Ft−1)+ êt , êt = σeê∗t , êt ∼ N(0,1),

where ê∗t is the standardised prediction error and Ft−1 denotes the information set at t−1. The
standard deviation σe of the TVPM (13) is derived from the Kalman recursions.

If we assume that E(ê∗t εt) = ρσt , the regression lemma yields

εt = ρσt ê∗t + ε
∗
t , ε

∗
t ∼ N

(
0,(1−ρ

2)σ2
t
)
. (14)

Equation (14) shows the two components of εt . The endogenous regressor ∆ut is correlated with
ê∗t , but not correlated with the orthogonal component ε∗t . Substituting (14) into (6) results in

gt = β0,t +β1,t∆ut +ρ(φσt−1ê∗t−1 +σt ê∗t )+φε
∗
t−1 + ε

∗
t . (15)

Thus, the standardised prediction errors ê∗t and ê∗t−1 in the equation above augment the original
measurement equation (6) as bias correction terms in the spirit of Heckman (1976)’s two-step
procedure for a sample selection model.12

11As shown in Appendix A.2, the TVPM-SV is conditionally linear, meaning that the Kalman filter can integrate
out β0,t and β1,t for a given trajectory of {logσt}T

t=1. Therefore, if the exogeneity assumption were violated, the Monte
Carlo estimate (10) would not be consistent.

12Note that the SV, σt , is part of the measurement equation (15), which resembles the SV in mean model of Koopman
and Hol Uspensky (2002), with the state transition shown in equation (7). Nevertheless, the TVPM-SV model with
bias correction is still conditionally linear, so that we use the simulated ML method introduced in the previous section
for estimation. Note also that the bias correction term ρ(φσt−1ê∗t−1 +σt ê∗t ) serves as a time-varying intercept.
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To summarise, the TVPM-SV with bias correction terms are estimated via the following three
steps:

1. Error decomposition: the IV equation (13) is estimated using the Kalman filter and the
standardised one step-ahead prediction errors ê∗t , t = 1, ...,T , are obtained.

2. Median unbiased estimator: the first-stage equation (8) is augmented with ê∗t . We then
estimate the following model using the Kalman filter:

gt = β0 +β1,t∆ut +ρσξ (φ ê∗t−1 + ê∗t )+
√

1−ρ2σξ (φε
∗
t−1 + ε

∗
t )

β1,t+1 = β1,t +σ1η1,t ,

and determine λ̂0 = σ̂0/σ̂ξ based on the exponential Wald test statistic.

3. Simulated MLE: with λ 2
0 = λ̂ 2

0
1+φ 2

1−ρ2 , the full model with measurement equation (15) and
state transition equation (7) is estimated using simulated ML with parameter vector θ =
(σε ,λ1,φ ,ρ).

4 Estimation results
We estimated the TVPMs-SV for the G-7 countries (Canada, France, Germany, Italy, Japan, the
United Kingdom and the USA) for the longest possible periods, selected according to the
availability of data. We used quarterly data constructed as follows: gt denotes the quarterly
growth rate of GDP; ∆ut is the quarter-to-quarter first difference of the ut ; and l̂t denotes the
quarterly growth rate of the labour force.13 (Table B.1 in Appendix B shows a full description of
the series for each country.) We included pulse dummy variables (D) for the 4 quarters of 1991
(D = 1 in 1991q1, 1991q2, 1991q3, and 1991q4; and D = 0 otherwise) in the estimation for
Germany in order to control for the re-unification.

Regarding the IVs employed for ∆ut , we used different combinations of the lags of ∆ut , gt− l̂t ,
l̂t and ĥt (available only for the USA). We consider that the lags of these variables reflect relevant
characteristics of the labour market that can be regarded as exogenous with respect to the current
existent relationships presented in the TVPMs-SV, that is, between gt and ∆ut and between gt − l̂t
and ∆ut . The final combination of instruments for each country was selected according to two
criteria based on the standard two-stage least square estimation: 1) the instruments employed
needed to be valid —that is, uncorrelated with the error term— according to Hansen’s J-statistic14;
and 2) the instruments employed needed to be jointly significant according to the first-stage F-
statistic.15 Moreover, since we incorporated MA(1) dynamics in the error terms of the TVPMs-SV,

13As mentioned before, the ĥt series (quarterly growth rate of hours worked per worker) is only available for the US
business sector.

14Hansen’s J-statistic is a test for over-identifying restrictions that is consistent in the presence of heteroskedasticity
and autocorrelation. Under the assumption of conditional homoskedasticity, Hansen’s J-statistic becomes the well-
known Sargan statistic of overidentifying restrictions (Hayashi , 2000).

15For the case of a single endogenous regressor, the first-stage F-statistic corresponds to the Cragg–Donald F-
statistic, which tests for weak identification (that is, it tests if instruments are only marginally relevant) (Stock and
Yogo , 2005).
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we employed lagged values prior to t−1 to consider only predetermined lagged variables.16

Tables 1 and 2 below present the estimates of the innovation variances for the TVPMs-SV
for the long-run growth rates and the long-run labour productivity growth rates, respectively. The
estimates satisfied the correct specification tests (no serial correlation, no heteroskedasticity and
normality) in the standardised one-period-ahead-forecast errors at the 95% confidence level.17

[INSERT TABLE 1 ABOUT HERE]
[INSERT TABLE 2 ABOUT HERE]

Regarding the endogeneity problem of the regressor ∆ut , from Tables 1 and 2 it possible to
observe that the estimated coefficient of the correction term bias, ρ , is statistically significant
in the majority of countries when models (4) and (5) were estimated, the only exceptions being
Canada and Japan. Hence, the endogeneity problem seems to be important in France, Germany,
Italy, the United Kingdom and the USA; and, for these countries, the final estimates need to be
retrieved from the estimations that include the bias correction terms.

The time-varying long-run growth rates are presented in Figures 2 to 8. As mentioned before,
we computed both the smoothed estimates and the one-sided estimates. The latter can be regarded
as the real-time estimates of the latent processes and, thus, are important in order to consider the
periods for each country that do not incorporate the effects of the GR. We also plot the rate of
growth of potential output estimated by the Congressional Budget Office (CBO) for the USA in
Figure 8 in order to compare our estimation results. It is worth noting that the CBO’s estimates lie
within our estimated 95% confidence intervals during the period of study.18

[INSERT FIGURE 2 ABOUT HERE]
[INSERT FIGURE 3 ABOUT HERE]
[INSERT FIGURE 4 ABOUT HERE]
[INSERT FIGURE 5 ABOUT HERE]
[INSERT FIGURE 6 ABOUT HERE]
[INSERT FIGURE 7 ABOUT HERE]
[INSERT FIGURE 8 ABOUT HERE]

16The sets of instruments selected in this way for each country are presented in Tables 1 and 2. A full description
of the two-stage least square estimation results obtained for each country is available on request.

17The innovation variances obtained from the TVPMs (without SV) are presented in Tables B.2 and B.3 in Appendix
B. The majority of these models presented both heteroskedasticity and normality problems, which corroborates the
importance of introducing the SV component. A full report showing all the correct specification tests for both the
TVPMs-SV and the TVPMs is available on request.

18The time-varying Okun coefficients on unemployment and the respective SV coefficients obtained from model
(4) are presented in Figures C.1 to C.7 in Appendix C. We find a reduction of the SV coefficients in the majority
of countries, which corroborates the findings of the literature on the Great Moderation (that is, a reduction in the
volatility of business cycle fluctuations) (Stock and Watson , 2002). On the other hand, the results obtained for the
Okun coefficients need to be interpreted in the light of a mix of components such as the demographic structure of each
country, its labour market flexibility, its labour market policies, and its policy implementation timing. This exceeds
the purpose of the current paper. Nevertheless, it is possible to say that, with the exception of Germany, the results
obtained corroborate previous findings by Mendieta-Muñoz (2017), who documented a reduction (increase) in the
Okun coefficient on unemployment in the USA (Canada, France, Italy, Japan and the United Kingdom) for the period
1981-2011 using a penalised regression spline estimator.
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Figures 2 to 8 show that both long-run growth rates have been declining in the G-7 countries
during the periods of study and that this result is robust to both the smoothed estimates and the one-
sided estimates, so that the long-run growth rates were already declining before the GR. In order
to calculate the relative magnitudes, Table 3 below calculates the percentage point (pp) changes in
the estimated long-run growth rates for the complete periods of study and for the period up until
2006Q4:

[INSERT TABLE 3 ABOUT HERE]

Upon inspection of Figures 2 to 8 and Table 3, it is possible to summarise the main two findings
as follows. First, long-run output growth rates have fallen in the G-7 countries during the post-
war era because of reasons unrelated to the effects of the GR. The estimates show that the long-
run output growth rates have been falling since the late 1960s in the USA; since early 1970s in
Canada, Germany and Japan; and since the mid-1980s in France, Italy and the United Kingdom.
If we consider the respective estimation periods, Japan is the country with the most important fall
in long-run output growth (approximately -8.6 pp) during the post-war era, followed by Canada
(-3.5 pp), Germany (-3.3 pp), the USA (-3.1 pp), France (-2.5 pp), Italy (-2.2 pp) and the United
Kingdom (-1.6 pp).

Second, long-run labour productivity growth rates have also fallen in the G-7 countries during
the post-war era because of reasons unrelated to the effects of the GR. The estimation results show
that productivity growth rates have been falling since the early 1960s in Canada; since the late
1960s in the USA; since the early 1970s in Germany and Japan; since the late 1980s in Italy; and
over the last decade in France.19 Again, if the respective periods of study are considered, Japan is
the country with the most important fall in long-run labour productivity growth (approximately -8.3
pp), followed by Germany (-4.9 pp), Canada (-3.1 pp), the USA (-3.1 pp, measured as output per
worker, or -2.8 pp, measured as output per hour worked), France (-2.7 pp), the United Kingdom (-
2.1 pp) and Italy (-1.6 pp). Because our approach identifies two broad sources of economic growth
—labour force growth and labour productivity growth, these results show that the main reason
behind the fall in long-run output growth rates is associated with the permanent fall in long-run
productivity growth rates.

5 Concluding remarks
The present article is related to the recent literature that has studied the possibility of permanent
losses of long-run GDP growth in developed countries. This paper has identified the rate of output
growth consistent with a constant unemployment rate with a simple statistical measure of
long-run output and has studied its evolution during the post-war era in the G-7 countries. The
methodology proposed also allowed the computation of the long-run growth rate associated with
labour productivity by separating the effects derived from movements in the rate of growth of the
labour force.

19It is worth mentioning that the results for the USA are broadly consistent with the other studies (mentioned in
Section 1) that have discussed the evolution of productivity growth in the USA: high growth rates in the 1950s and
1960s, lower growth rates in the 1970s and 1980s, relatively higher growth rates in the 1990s and 2000s, and a further
reduction in productivity growth rates since then.
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The long-run growth rates were estimated using time-varying parameter models that
incorporate both stochastic volatility and a Heckman-type two-step estimation procedure that
deals with the issue of endogenous regressors in the econometric models. The results show a
permanent reduction in both long-run output and labour productivity growth rates during the
post-war era in the G-7 countries that is not associated with the detrimental effects of the Great
Recession. Although each country has experienced its own growth dynamics, we document that
long-run output growth rates began to fall since the late 1960s and that long-run productivity
growth began to fall since the early 1960s. With respect to the former, we quantify that Japan is
the country that has experienced the largest decline (-8.6 percentage points), followed by Canada
(-3.5 percentage points), Germany (-3.3 percentage points), the USA (-3.1 percentage points),
France (-2.5 percentage points), Italy (-2.2 percentage points) and the United Kingdom (-1.6
percentage points). Likewise, we quantify that the fall in long-run labour productivity growth
rates has been approximately 8.3 percentage points in Japan, 4.9 percentage points in Germany,
3.1 percentage points in Canada and the USA, 2.7 percentage points in the United Kingdom, and
1.6 percentage points in Italy. These findings suggest that that the slowdown in productivity
—and not demographic factors— has been the main driver of the decline in long-run GDP
growth.

The results found raise questions about the underlying properties of output and productivity.
Future theoretical and empirical research should try to study the deep causes of the secular decline
in economic growth. One potentially fruitful line for future research could try to decompose
productivity into technological (namely, total factor productivity) and non-technological (namely,
capital deepening and labour quality) movements as in Antolin-Diaz et al. (2017). Another
possibility is to try to identify the main sectors in which the largest declines in productivity
growth have taken place. Finally, given that the presence of significant hysteresis effects (i.e., that
some of the recessions have had systematic permanent effects on economic growth) is not a
remote possibility (Cerra and Saxena , 2008; DeLong and Summers , 2012; Reifschneider et al. ,
2015), it may be possible to try to identify the relevant short-run fluctuations that have affected
the individual components of long-run output growth rates in each country.
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Figure 1. Cumulative sum of squared standardised residuals of model (4) (denoted by g) and model (5)
(denoted by g− l and g− l−h) for the USA. Left: residuals from the Time-Varying Parameter Models with
Stochastic Volatility (TVPMs-SV). Right: residuals from the Time-Varying Parameter Models (TVPMs).

The cumsum statistic of squared standardised residuals detects heteroskedasticity left in the residuals of the
latter.
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(a) Long-run growth rate (model (4))
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(b) Long-run labour productivity growth rate (model
(5))

Figure 2. Canada, 1961Q1-2016Q4. Blue straight lines are the smoothed estimates. Blue dotted lines are
the 95% confidence intervals around the latter. Red straight lines are the one-sided estimates. Gray

rectangular bars show the actual series.
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1984Q1-2016Q4
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(b) Long-run labour productivity growth rate (model
(5)), 1996Q1-2016Q4

Figure 3. France. Blue straight lines are the smoothed estimates. Blue dotted lines are the 95% confidence
intervals around the latter. Red straight lines are the one-sided estimates. Gray rectangular bars show the

actual series.
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(b) Long-run labour productivity growth rate (model
(5))

Figure 4. Germany, 1963Q1-2016Q4. Blue straight lines are the smoothed estimates. Blue dotted lines are
the 95% confidence intervals around the latter. Red straight lines are the one-sided estimates. Gray

rectangular bars show the actual series.
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(b) Long-run labour productivity growth rate (model
(5))

Figure 5. Italy, 1984Q1-2016Q4. Blue straight lines are the smoothed estimates. Blue dotted lines are the
95% confidence intervals around the latter. Red straight lines are the one-sided estimates. Gray rectangular

bars show the actual series.
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(a) Long-run growth rate (model (4))

trend growth 

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

12.5 trend growth 

(b) Long-run labour productivity growth rate (model
(5))

Figure 6. Japan, 1961Q1-2016Q4. Blue straight lines are the smoothed estimates. Blue dotted lines are the
95% confidence intervals around the latter. Red straight lines are the one-sided estimates. Gray rectangular

bars show the actual series.
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(b) Long-run labour productivity growth rate (model
(5))

Figure 7. United Kingdom, 1972Q1-2016Q4. Blue straight lines are the smoothed estimates. Blue dotted
lines are the 95% confidence intervals around the latter. Red straight lines are the one-sided estimates.

Gray rectangular bars show the actual series.
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(a) Long-run growth rate (model (4))
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(b) Long-run labour productivity growth rate (model
(5), labour productivity measured as output per

worker)
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(c) Long-run labour productivity growth rate (model
(5), labour productivity measured as output per hour

worked)

Figure 8. USA, 1951Q1-2016Q4. Blue straight lines are the smoothed estimates. Blue dotted lines are the
95% confidence intervals around the latter. Red straight lines are the one-sided estimates. Gray rectangular

bars show the actual series. The green dotted line in Figure 8a shows the potential output growth rate
estimated by the Congresional Budget Office (CBO).
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A Econometric details
In this section, we outline the numerically accelerated importance sampling (NAIS) of Koopman
et al. (2015) and the particle filter applied to the proposed TVPMs-SV. As before, for simplicity
we only consider the TVPM-SV applied to model (4).

A.1 Numerically accelerated importance sampling
We define ht = logσt , and the rest of the notations are kept consistent with the main text. Starting
from (9), we write the likelihood as

L(Y |X ;θ) = g(Y |X ;θ)
∫

H
ωθ (H)g(H|Y,X ;θ)dH. (A.1)

We propose a linear Gaussian state space model with state ht as follows,

y∗t = ht + ε
∗
t , y∗t =

ct

bt
, ε

∗
t ∼ N(0,

1
bt
),

ht+1 = ht +σεηt , t = 1, ...,T,
(A.2)

where ct and bt are the importance parameters to be determined, which are implicit functions of Y ,
X and θ . Model (A.2) implies a (conditional) Gaussian importance density

g(y∗t |ht) = exp(at +btht−
1
2

cth2
t ),

where at = −1
2(log(2π)− logct + ctb2

t ) is the integrating constant that is not associated with ht .
We then decompose the conditional measurement likelihood as follows:

p(Y |X ,H;θ) =
T

∏
t=1

fH,t(vt(H)), fH,t(.)
d.
= N(0,ut(H)),

where d.
= denotes equivalence in distribution, and vt(H) and ut(H) are the prediction error and its

variance at time time t, delivered by the Kalman filter based on the TVPM-SV shown in equations
(6) and (7) with H given. Therefore, the importance weight in (A.1) can be factorised by

ωθ (H) =
p(Y |X ,H;θ)

g(Y |X ,H;θ)
=

T

∏
t=1

fH,t(vt(H))

g(y∗t |ht)
=

T

∏
t=1

ωθ ,t .

A convenient way of constructing a globally efficient importance density is by minimising the
variance of the importance weights ωθ (H( j)), j = 1, ...,M, in line with the assumption of finite
variance suggested by Geweke (1989).20 This minimisation can be closely approximated because
of the decomposition described above. That is, for t = 1, ...,T we solve the minimisation

min
ct ,bt

∫
λ

2
t (ct ,bt)ωθ ,tg(ht |Y,X ;θ)dht ,

20Which is globally efficient in a χ2-divergence sense between p(.) and g(.).
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where
λt(ct ,bt) = log fH,t(vt(H))− logg(y∗t |ht)− constant.

Instead of replacing the above integral with a Monte Carlo average, the NAIS uses Gauss-Hermite
(GH) quadrature to accurately calculate its value by noticing that

g(ht |Y,X ;θ)
d.
= N(Eg(ht),Vg(ht)),

where Eg(ht) and Vg(ht) are the smoothed mean and variance of ht based on the importance model
(A.2). Hence, the minimisation problem becomes

min
ct ,bt

S

∑
j=1

λt, j(ct ,bt)ωθ ,t, j,

where S is the total number of GH nodes (we simply use S = 10) z j with corresponding weights
k j, j = 1, ...,S, and where

λt, j(ct ,bt) = log fH,t(vt(H( j)))− logg(y∗t |h
( j)
t )− constant,

ωθ ,t, j =
fH,t(vt(H( j)))

g(y∗t |h
( j)
t )

k j exp(−1
2

z2
j).

(A.3)

The above is a weighted least square (WLS) problem21 with h( j)
t constructed using z j, i.e.,

h( j)
t = Eg(ht)+

√
Vg(ht)z j, j = 1, ...,S. (A.4)

Thus, if one initialises the set of importance parameters ct and bt , the NAIS calculates first (A.4)
and plugs it into the WLS problem (A.3), which has dependent variables

Γt = (log fH(1),t , ..., log fH(S),t)
′,

a matrix Λt of regressors whose j-th row is

(1,h( j)
t ,−1

2
h( j)

t
2
),

and a diagonal weighting matrix Ωt with the j-th diagonal element ωθ ,t, j.
Finally, the importance parameter can be updated by calculating

(Λ′tΩtΛt)
−1

Λ
′
tΩtΓt .

Based on the updated value of ct and bt , GH nodes can be again used to construct h( j)
t for all t.

This procedure iterates until convergence, and thus finishes the construction of importance density.
The convergence is found to be fast and usually takes less than 5 iterations.

21Note that log fH,t(vt(H( j))) is a constant and that g(y∗t |h
( j)
t ) is log-linear.
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A.2 Particle filter for TVPM-SV
The inference given in Section 2 is about the smoothed estimate, which is based on the available
information from t = 1 to T . One may be interested either in the filtered or in the one-sided
estimate at time t, which is based on information up to t. To this end, we apply a particle filter to
the TVPM-SV, which is a nonlinear state space model. Specifically, it is a sampling importance
resampling (SIR) sequential Monte Carlo method based on the NAIS importance density.22

In the following, we suppress the dependence on the simulated ML estimate θ̂ . From (A.2) it
can be shown that a sequential sampler for ht is given by the Gaussian density

g(ht |ht−1,Y,X)
d.
= N(µt ,πt), πt =

σ2
ε

1+σ2
ε ct

, µt = πt

(
bt +

ht−1

σ2
ε

)
, t = 2, ...,T,

with an obvious modification for initialisation g(h1|Y,X). This sequential sampler is highly
efficient because it takes into account all the information in {Y,X}. Specifically, it is a
Rao-Blackwellisation23 version of the particle efficient importance sampling of Scharth and Kohn
(2016). We summarise the filtering algorithm below:

1. At time t = 1, sample h( j)
1 ∼ g(h1|Y,X), j = 1, ...,M. Use diffuse initialisation to draw M

samples of β
( j)
0,1 and β

( j)
1,1 , j = 1, ...,M.

Compute the prediction errors v( j)
1 and their variances u( j)

1 via Kalman recursion.

Compute the importance weight

ω
( j)
1 =

f ( j)
1 (v( j)

1 )p(h( j)
1 )

g(h( j)
1 |Y,X)

, where f ( j)
1 (.)

d.
= N(0,u( j)

1 ).

Record the log-likelihood contribution log l̂1 = log(∑M
j=1 ω

( j)
1 /M).

Normalise the weights W ( j)
1 = ω

( j)
1 /∑

M
j=1 ω

( j)
1 .

Record the filtered (one-sided) estimate of the SV by

Ê1(e
h1
2 ) =

M

∑
j=1

W ( j)
1 exph( j)

1 /2,

V̂1(e
h1
2 ) =

M

∑
j=1

W ( j)
1 exph( j)

1 −
(
Ê1(e

h1
2 )
)2
.

(A.5)

Record the filtered (one-sided) estimate of βi,1, i = 0,1 by

Ê1(βi,1) =
M

∑
j=1

W ( j)
1 β

( j)
i,1 ,

V̂1(βi,1) =
M

∑
j=1

W ( j)
1 V ( j)

i,p +
M

∑
j=1

W ( j)
1 β

( j)
i,1

2
−
(
Ê1(βi,1)

)2
,

(A.6)

22Readers may refer to Doucet et al. (2001) and the reference therein for general discussions on the sequential
Monte Carlo method.

23Because, conditional on the propagation of the SV eht , the Kalman filer is used to integrate out βi,t , i = 0,1.
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where V ( j)
i,p is the filtered variance of βi,1 derived from the Kalman recursion with h( j)

1 given.

Record the standardised residual

ε̂1 = (
M

∑
j=1

W ( j)
1 v( j)

1 )/
( M

∑
j=1

W ( j)
1

√
u( j)

1
)
. (A.7)

Compute the effective sample size ESS = 1/(∑M
j=1W ( j)

1 )2.

2. For t = 2, ...,T , propagate the particle system. If ESS < 0.75M, resample with replacement
M particles {h( j)

t−1,β
( j)
0,t−1,β

( j)
1,t−1,v

( j)
t−1,u

( j)
t−1}M

j=1 with probability {W ( j)
t−1} and set W ( j)

t−1 = 1/M
for j = 1, ...,M.

Sample h( j)
t ∼ g(ht |h( j)

t−1,Y,X), j = 1, ...,M. Use Kalman recursion to compute β
( j)
i,t , i = 0,1

with associated filtered variance V ( j)
i,p .

Compute the prediction errors v( j)
t and their variances u( j)

t .

Compute the importance weight

ω
( j)
t =W ( j)

t−1×
f ( j)
t (v( j)

t )p(h( j)
t |h

( j)
t−1)

g(h( j)
t |h

( j)
t−1,Y,X)

.

Record log l̂t = log(∑M
j=1 ω

( j)
t ) and normalise the importance weight W ( j)

t .

Record the filtered estimates in (A.5)-(A.7) and compute ESS.

3. After the recursion terminates, compute the log-likelihood l̂ = ∑
T
t=1 l̂t for TVPM-SV

evaluated at the simulated ML estimate θ̂ . This can be used to conduct likelihood-based
tests and to calculate information criteria; and the standardised residuals can be used to test
for model misspecification.
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B Data and estimation results obtained from the time-varying
parameter models without stochastic volatility

Table B1. Data and sourcesa

Country Period gt
b ∆ut

c l̂td ĥt
e

Canada 1961Q1-2016Q4 OECD OECD OECD -
France 1984Q1-2016Q4 and OECD OECD FRED: 1996Q1-2011Q4 and -

1996Q1-2016Q4f OECD: 2012Q1-2016Q4
Germany 1963Q1-2016Q4 OECD OECD FRED: 1963Q1-2011Q4 and -

OECD: 2012Q1-2016Q4
Italy 1984Q1-2016Q4 OECD OECD FRED: 1984Q1-2011Q4 and -

OECD: 2012Q1-2016Q4
Japan 1961Q1-2016Q4 OECD OECD OECD -
United Kingdom 1972Q1-2016Q4 OECD FRED: 1972Q1-1983Q4 and BE -

OECD: 1984Q1-2016Q4
USA 1951Q1-2016Q4 OECD FRED FRED BLS
Notes: aOECD: Organization for Economic Cooperation and Development database. FRED: Federal Reserve Board of St.
Louis database. BE: Bank of England’s collection of historical macroeconomic and financial statistics, “A millennium of
macroeconomic data for the UK”, Version 3. BLS: Bureau of Labor Statistics; bRate of growth of GDP (percent change from
same quarter a year ago); cFirst differences of the unemployment rate (from same quarter a year ago). The unemployment
rate in each country refers to the following indicators. Canada, France, Italy, Japan and the United Kingdom: Harmonised
unemployment rate. Germany: Unemployment rate, aged 15 and over. USA: Civilian unemployment rate; dRate of growth of
the civilian labour force (percent change from same quarter a year ago); eRate of growth of hours worked per worker (percent
change from same quarter a year ago), which was only available for the US business sector; f1984Q1-2016Q4 refers to the
estimation of the long-run output growth rate (model (4)) and 1996Q1-2016Q4 refers to the estimation of the long-run labour
productivity growth rate (model (5)) since the l̂t series is only available for the latter period.
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:ĥ
t−

3,
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C Time-varying Okun coefficients on unemployment and
stochastic volatility parameters obtained from model (4)
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(b) Stochastic volatility parameter

Figure C.1. Canada, 1961Q1-2016Q4. Smoothed estimates (blue straight lines) with 95% confidence
intervals (green dotted lines).
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(b) Stochastic volatility parameter

Figure C.2. France, 1984Q1-2016Q4. Smoothed estimates (blue straight lines) with 95% confidence
intervals (green dotted lines).
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(a) Okun coefficient on unemployment
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(b) Stochastic volatility parameter

Figure C.3. Germany, 1963Q1-2016Q4. Smoothed estimates (blue straight lines) with 95% confidence
intervals (green dotted lines).

1985 1990 1995 2000 2005 2010 2015

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

(a) Okun coefficient on unemployment

1985 1990 1995 2000 2005 2010 2015

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

(b) Stochastic volatility parameter

Figure C.4. Italy, 1984Q1-2016Q4. Smoothed estimates (blue straight lines) with 95% confidence
intervals (green dotted lines).
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Figure C.5. Japan, 1961Q1-2016Q4. Smoothed estimates (blue straight lines) with 95% confidence
intervals (green dotted lines).
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Figure C.6. United Kingdom, 1972Q1-2016Q4. Smoothed estimates (blue straight lines) with 95%
confidence intervals (green dotted lines).
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Figure C.7. USA, 1951Q1-2016Q4. Smoothed estimates (blue straight lines) with 95% confidence
intervals (green dotted lines).
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