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I.   Introduction 
 
 
 The attempt to reduce motor vehicle related fatalities in the United States has 

been a major public health endeavor for the last several decades.  Nonetheless, the 

number of fatalities is still quite large.  In 2005, for example, there were over forty-three 

thousand lives lost on our roads and highways.  To date numerous studies have been 

conducted to examine the determinants of such accidents and what could be done to 

ameliorate the losses.  These studies considered factors associated with vehicles, 

roadways, and drivers.  More specifically, they have examined the effect of alcohol 

consumption, speed, speed variance, the type of highways, income, types of vehicles on 

the roadways, inspection of vehicles, miles driven, unemployment rates, speed limits, the 

deregulatory climate, among many other factors.  Just recently some of these studies have 

included the effect of cell phones on accidents.  The effects of these factors do not 

necessarily remain static over time which only compounds the difficulty in examining the 

marginal effects of each one of them.1  

 Peltzman (1975) can be credited with initiating the modern econometric modeling 

approach to investigating the determinants of motor vehicle accidents.  One of the 

important contributions of the Peltzman study was the attempt to examine potential 

offsetting behavior on the part of drivers as they adjusted their driving behavior as 

regulations were imposed, such as the requirement that automobiles be equipped with 

seatbelts.  Since his classic paper, numerous studies have been conducted on such topics 

using various econometric techniques and data sets.  For example, there were many 

                                                 
1 For example, it was estimated that motor vehicle inspection had a life-saving effect initially, but its effect 
diminished over time.  See, for example, Keeler (1994). 
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studies looking at the effect of motor vehicle inspection on automobile accidents2, the 

effect of speed and speed variance on such accidents3, the effect of seatbelts and seatbelt 

laws on accidents4, the effect of alcohol and taxing policies on accidents5, among other 

factors which might have countervailing effects.  Loeb, Talley, and Zlatoper (1994) 

evaluate the evidence on many of these potential determinants of accidents.  However, 

these early studies obviously did not consider the impact of cell phones on motor vehicle 

accidents since cell phone use in the United States only became relevant starting 

approximately in the 1980s.  For example, there were only about 340 thousand cell phone 

subscribers in the United States in 1985.  The growth of cell phone usage and number of 

subscribers has been explosive since then.  By the year 2004 there were over 182 million 

subscribers in the United States.6  Given this rapid increase in cell phone usage, 

economists, safety experts, and policy makers increased their attention to the effect they 

may have on motor vehicle related accidents.   

 Cell phone use by drivers may increase accident rates due to the distracting effect 

of telephone conversations, an inability to do more than two things at the same time, i.e., 

drive a vehicle and talk on a cell phone, as well as reduce attention spans and reduce 

reaction times.  To date, four states (Connecticut, New Jersey, New York, and Utah) and 

the District of Columbia have banned the use of hand-held cell phones by drivers.7  

Strangely, the bans do not impact on the use of hands-free devices as of yet in spite of 

research indicating that these devices are likely to have similar adverse effects on safety 
                                                 
2 See, for example, Keeler (1994), Loeb (1985, 1990), Loeb and Gilad (1984), and Garbacz and Kelly 
(1987). 
3 See, for example, Lave (1985), Levy and Asch (1989), Fowles and Loeb (1989), among others. 
4 See, for example, Evans (1996), Dee (1998), and Loeb (1993, 1995, 2001). 
5 See, for example, Fowles and Loeb (1989) and Chaloupka, et al (1993). 
6 See Cellular Telecommunication and Internet Association (2005). 
7 Both California and Washington will ban the use of cell phones by drivers on July 1, 2008.  Furthermore, 
both New Jersey and California will ban text messaging by drivers in the year 2008.   
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as do hand-held devices.8  As such, there is indeed concern that accidents are related to 

the volume of cell phones.  But it is not only the sheer number of cell phones that concern 

researchers but also the propensity of drivers to use these devices.  Glassbrenner (2005) 

has estimated that ten percent of all drivers at any moment of time during daylight hours 

were using either hand-held or hands-free phones. In addition, there is indication that the 

percentage of drivers using these devices is increasing over time.9  Hence, not only are 

cell phones and subscribers increasing over time, but so is driver usage of these devices 

and apparently at an increasing rate.   

 

A.  Background 

 While statistical studies do seem to indicate a possible association between cell 

phones and automobile accidents, the results are not consistent, with some studies 

indicating no significant relationship between cell phones and automobile accidents and 

others indicating a relationship.  The most well-known study regarding cell phone effects 

on automobile accidents is by Redelmeier and Tibshirani (1997) using cross-over 

analysis and examining property-only accidents.  They conclude that property-only 

accident increase four-fold when cell phones are involved.  They also find that 39% of 

drivers involved in these accidents use their cell phones to call for assistance after the 

accident.  McEvoy et al. (2005) also find an increase in the risk of an accident using data 

on crashes resulting in hospital visits.  Using a laboratory environment, Consiglio et al. 

(2003) simulated driving conditions and found that the reaction time in a brake producing 

situation was reduced when cell phones were in use and this reduction occurred 

                                                 
8 See, for example, Consiglio et al. (2003). 
9 Glassbrenner (2005) has estimated that driver use of just hand-held phones increased from 5% in 2004 to 
6% in 2005. 
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regardless of whether the cell phones were hand-held or hands-free devices.  Violanti 

(1998), using regression analysis found a strong association between cell phone use and 

motor vehicle fatalities.  More specifically, Violanti attributes an approximate nine-fold 

increase in fatalities when cell phones are in use as opposed to when they are not.10   

 As mentioned above, not all research has supported the claim that cell phones 

were associated with accidents.  Rather, there is research evidence that cell phones do not 

have such a significant impact on motor vehicle accidents.  Laberge-Nadeau et al (2003) 

using logistic-normal regression models and Canadian survey data initially found an 

association between cell phone use and accidents.  However, this risk was diminished as 

their basic models were extended, suggesting that their results were fragile with respect to 

model specification.  The life-taking effect of cell phones was further countered by 

Chapman and Schofield (1998) who argue that cell phones should be credited with saving 

lives. Chapman and Schofield found that, “Over one in eight current mobile phone users 

have used their phones to report a road accident.”11  Making reference to the “golden 

hour,” - the period of time crucial for survivorship from various medical emergencies and 

accidents - they claim that it is highly likely that many lives were saved due to cell 

phones.12  Similarly, Poysti, et al. (2005) claim that, “phone-related accidents have not 

increased in line with the growth of the mobile phone industry.”13 

 More recently, Loeb et al. (forthcoming) addresses the fragile results reported 

across the various research endeavors by using econometric methods and specification 

error tests to examine the potential interacting effect of life-saving and life-taking 

                                                 
10 See Violanti (1998, p. 522). 
11 See Chapman and Schofield (1998, p.5). 
12 See Chapman and Schofield (1998, p. 6). 
13 See Poysti (2005, p. 50). 
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attributes of cell phones with regard to motor vehicle fatalities.  A non-linear model is 

suggested and the statistical results suggest a non-monotonic relationship between cell 

phone availability and motor vehicle fatalities.  Initially, with low cell phone subscriber 

rates, cell phones are found to be associated with net life-taking effects.  As the number 

of subscribers increase, the life-saving effect overwhelms the life-taking effect.  

However, starting in the 1990s, when subscribers number 100 million and more, the life-

taking effect overwhelms the life-saving effect once again.  These results are found to be 

statistically significant and stable.  The results are considered reliable given the outcome 

of the specification error tests which paid particular attention to the structural form of the 

models. 

 The Loeb et al. paper is the basis for the current study.  The reliability of the 

results suggested is examined using panel data and making use of both classical and 

Bayesian estimation techniques.  One would expect that the true relationship between 

motor vehicle fatalities and cell phones should be observed using either classical or 

Bayesian techniques.  Confidence regarding the results should be enhanced if similar 

results are forthcoming from both the classical and Bayesian techniques.  

To be more precise, one of the most widely used and familiar methods to 

understand the marginal effects of the various potential factors on traffic fatalities is 

multiple regression using ordinary least squares (OLS).  In this paper we utilize OLS 

using cross sectional, time series data and then we apply Bayesian Extreme Bounds 

Analysis.   Our methods are designed to explore both parameter uncertainty and model 

uncertainty.  
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In Section II we describe the data, develop a fixed effects model, and discuss 

parameter estimates.   Section III further explores estimation using Bayesian sensitivity 

analysis.  In particular we see whether or not the data can support reliable parameter 

estimates over subsets of models.  Our concluding section (IV) highlights how classical 

and Bayesian methods agree and differ across model specifications and suggest ways this 

data might be further examined. 

 
II.  The Classical Model 
 
 In order to understand the effects of socio-economic and policy related variables 

on traffic fatality rates we utilize data on 50 states and Washington, D.C. over the period 

from 1980 to 2004.   We specify a linear relationship between the fatality rate (vehicle 

fatalities per 100 million miles traveled) for the jth state and for the ith year and the 

variables described in Table I.  The base model is estimated using 50 state dummy 

variables and includes the year as a trend variable.14   

                                                 
14 The results in this paper are not sensitive to other specifications such as fixed effects or random effects 
estimation.   We selected the model presented in this paper for expository clarity.  Additional models were 
estimated which exclude some of the regressors presented and include others, such as a “companion 
variable.”  Companion variables attempt to account for factors not addressed by the time trend and are 
discussed in Loeb (1995, 2001).  In addition, models were estimated using regional dummies instead of 
state dummies.  Regardless, the results remain stable and similar to those reported.  These additional 
models are available from the authors. 
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Table I 
Explanatory Variables a 

Cross Sectional - Time Series Analysis of Traffic Fatality Rates 
For 50 States and DC from 1980 to 2004 

 
Name Description Mean Std Dev Expected 

Sign 
PERSE Blood alcohol concentration (BAC) 

required for drunk driving arrest with 
zero coded as an indicator of no 
PERSE law 
 

.0842 .0426 - 

ANNUAL Indicator for annual safety inspection 
 

.430 .495 - 

SPEED_RU Maximum posted speed limit, rural 
highways 
 

63.211 6.325 + 

BELT Indictor for presence legislated seat belt 
law 
 

.658 .474 - 

BEER Per capita beer consumption (in gal) 
 

1.322 .229 + 

MLDA Minimum legal drinking age 
 

20.631 .883 - 

YOUNG Percentage of males (16-24) relative to 
population of age 16 and over 
 

.184 .0289 + 

CELL Imputed number of cell phone 
subscribers 
 

971316.8 2161472 + 

CELLSQ Square of CELL 
 

5.61e+12 3.15e+13 - 

CELLCUBE Cube of cell 
 

6.39e+19 6.33e+20 + 

YEAR Year 
 

1992 7.214 - 

a For data sources, see Appendix 1 

  
 This set of variables form the basis for a fairly standard specification that is not 

particularly complex.  One novel feature is the use of the square and cube of the number 

of cell phone subscribers.  As discussed in Loeb (forthcoming), the number of cell phone 

subscribers and the square and cube of this variable are included to account for the 
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possibilities of externalities associated with increasing cell phone usage that would allow 

quicker emergency resources to be available at a crash site.   

 Ordinary least squares results for the basic model are presented in Table II.  This 

regression included 50 state dummy variables and a constant term, but those estimated 

coefficients are omitted from the table.  

Table II 
Ordinary Least Squares Estimates a 

Standard Errors, t-Statistics, P values, and Confidence Intervals 
Cross Sectional - Time Series Analysis of Traffic Fatality Rates 

For 50 States and DC from 1980 to 2004 

 
Estimated 
Coefficient 

Standard 
Error t-Stat P>|t| 95% Lower 95%Upper 

YEAR -0.06537 0.003262 -20.04 0.000 -0.0717 -0.0589 
PERSE -1.37518 0.223152 -6.16 0.000 -1.812 -0.9373 
ANNUAL -0.02375 0.047246 -0.50 0.615 -0.1164 0.06894 
SPEED_RU 0.003277 0.002775 1.18 0.238 -0.0021 0.0087 
BELT -0.06479 0.03247 -2.00 0.046 -0.1284 -0.0010 
BEER 0.766971 0.105354 7.28 0.000 0.5602 0.97366 
MLDA -0.00208 0.013218 -0.16 0.875 -0.0280 0.02385 
YOUNG 3.984259 0.400289 9.95 0.000 3.198 4.76959 
CELL 7.80E-08 2.41E-08 3.24 0.001 3.08E-08 1.25E-07 
CELLSQ -1.05E-14 3.53E-15 -2.99 0.003 -1.75E-14 -3.61E-15 
CELLCUBE 3.53E-22 1.30E-22 2.71 0.007 9.74E-23 6.09E-22 

a Estimated coefficients for state variable dummies were included in the model specification, but the 
estimates for these and the constant term are omitted from Table II. Adjusted R2: .8580; Root MSE: .28642. 
F(61,1213): 127.23 
 
 
III.  Bayesian Extreme Bounds Analysis 
 
 Classical estimation addresses the issue of parameter uncertainty in relation to the 

sampling distribution induced by normality assumptions in the linear regression model.  

As shown in Section II, statistically significant estimates were associated with the 

majority of the variables included in the model and the signs of the estimates conformed 

to prior beliefs about what the marginal effects of the variables should be.   In this section 

we address the issue of parameter stability across model specifications using Extreme 
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Bounds Analysis (EBA) as introduced in Leamer (1982).   For more detailed examples of 

EBA theory and applications see Fowles and Loeb (1995) or Fowles and Loeb (1989). 

The spirit in which EBA is used in this paper is to provide a picture as to the extent to 

which changes in fundamental model specification (inclusion or exclusion of variables) 

lead to changes in the signs of estimated parameters associated with fatality rate 

regressors.   At first there could be 261 possible subset regressions if we considered 

adding or dropping individual state dummy variables.   Although EBA could easily 

produce credible bounds for parameter estimates over this wide a variety of specifications 

we decided to constrain the search over just a subset of possible models by forcing state 

dummy variables to always be included.  In order to tractably manage the fifty state 

binary variables, EBA was performed on a modified model that was developed in two 

stages.  First, fatality rates were regressed on the fifty state binary variables and then the 

residuals from this regression were analyzed based on the classical model discussed 

above.  The cubic and square effects of the number of cell phones were attenuated by 

transforming cell phone usage and the polynomial transformations by several orders of 

magnitude for computational ease and readability.    

There are two results presented here.  First, all variables were treated as doubtful 

with prior means set at zero with a prior variance/covariance matrix set to the identity 

matrix.   Posterior bounds are calculated by then sweeping a scalar multiple of the prior 

variance/covariance matrix from zero to infinity.  With this Bayesian specification, the 

extreme upper and lower bounds always allow for a zero posterior mean (corresponding 

to infinite prior precision).  From a traditional perspective, setting the prior mean to zero 

represents the tacit belief that these variables could plausibly be dropped from a 
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regression specification.  Results are reflective of the posterior bounds within 0%, 75%, 

95%, 99%, and 100% confidence ellipsoids.   Table III presents EBA upper and lower 

bounds for 100% (extreme), 75%, and 95% likelihood ellipsoids. The maximum 

likelihood point estimate is within the 0% confidence ellipsoid (the upper and lower 

bounds are equal).  75% and 95% bounds are data favored, or what Leamer (1983) calls 

credible bounds. In Table IV we imposed vague priors on YEAR, PERSE, ANNUAL, 

SPEEDRU, BELT, BEER, MLDA, and YOUNG.  The second model places no 

restrictions on the intercept term, nor on CELL, CELLSQ, and CELLCUBE.  Thus they 

are considered “free” variables without a defined conjugate prior.  From a frequentist 

perspective, these variables would not be variables that would plausibly be dropped from 

a regression specification. 

Table III 
Extreme, 75%, and 90% Likelihood Bounds 

Estimates of Posterior Means with All Variables Doubtful 
 

Variable Extreme 
Minimum 

Extreme 
Maximum 

75% 
Minimum 

75% 
Maximum 

95% 
Minimum 

95% 
Maximum 

YEAR -.114 .0451 -.0771 -.0597 -.0786 -.0579 
PERSE -7.155 6.088 -1.833 -.292 -1.977 -.145 
ANNUAL -.555 .566 -.0536 .0773 -.0660 .0896 
SPEEDRU -.0558 .0534 -.0087 .0040 -.0099 .0052 
BELT -.925 .857 -.171 .0363 -.191 .0560 
BEER -1.165 1.332 .0207 .311 -.0069 .339 
MLDA -.396 .389 -.0524 .0393 -.0611 .0480 
YOUNG -9.177 12.588 2.137 4.654 1.896 4.885 
CELL -.593 .697 .0283 .178 .0140 .192 
CELLSQ -.112 .0984 -.0258 -.0013 -.0281 .0010 
CELLCUBE -3.816 4.259 -.0298 .911 -.119 .999 
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Table IV 

Extreme, 75%, and 90% Likelihood Bounds 
Estimates of Posterior Means with 

Intercept, CELL, CELLSQ, and CELLCUBE as Free Variables 
 

Variable Extreme 
Minimum 

Extreme 
Maximum 

75% 
Minimum 

75% 
Maximum 

95% 
Minimum 

95% 
Maximum 

YEAR -.103 .0340 -.0767 -.0597 -.0781 -.0579 
PERSE -6.234 5.167 -1.831 -.291 -1.973 -.145 
ANNUAL -.477 .488 -.0536 .0772 -.0660 .0895 
SPEEDRU -.0482 .0458 -.0087 .0040 -.0099 .0052 
BELT -.801 .733 -.171 .0363 -.191 .0560 
BEER -.992 1.158 .0207 .311 -.0069 .338 
MLDA -.341 .335 -.0524 .0393 -.0610 .0479 
YOUNG -7.663 11.073 2.137 4.643 1.896 4.872 
CELL -.550 .327 .0442 .153 .0330 .162 
CELLSQ -.0430 .0702 -.0201 -.0059 -.0212 -.0044 
CELLCUBE -2.270 1.414 .192 .654 .144 .692 

 
 

 The shaded cells in Tables III and IV represent non-fragile estimates where the 

bounds for the posterior mean do not cover zero.  Data clearly suggest that YEAR, 

PERSE, BEER, YOUNG, and CELL estimates are insensitive to model specification 

changes and that the posterior mean estimates fall within regions that are anticipated.  

Notice that EBA results from Table III generally conform with OLS estimates presented 

in Table II.  Non-fragile estimates certainly are associated with estimates that are 

statistically significant at a 5% level.  This is especially true for YEAR, PERSE, 

YOUNG, and CELL.  When comparing EBA and OLS results from Table IV, the only 

inferential differences occur in the estimation of the effect of BELT which is 

conventionally statistically significant, but fragile from a Bayesian perspective.  
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 It is somewhat unusual to see this much agreement between OLS and EBA results 

because of the draconian nature of the EBA procedure.15  EBA exposes fragility that is 

inherent when data are multicollinear.   Remarkably, this data do not suffer much from 

this econometric problem.16  

 

IV. Concluding Comments 

 This paper uses classical regression methods along with Bayesian Extreme 

Bounds Analysis (EBA) to addresses the effect of cell phones on motor vehicle fatality 

rates so as to examine the potential of net life-taking and life-saving effects.  The models 

adjust for a time trend (YEAR), the maximum blood alcohol concentration legislation 

(BAC) required for drunk driving arrests, annual inspection (ANNUAL), the maximum 

posted rural speed limit (SPEED_RU),a dummy variable indicating the presence of a seat 

belt law (BELT), per capita consumption of beer (BEER), the minimum legal drinking 

age (MLDA), the percentage of males aged 16-24 relative to the population of age 16 and 

over (YOUNG), and various measures of cell phone subscribers (CELL, CELLSQ, 

CELLCUBE).  The measures of cell phones are allowed to enter the model in a non-

linear manner so as to examine the potential of non-monotonic effects of cell phones on 

motor vehicle fatality rates as suggested by Loeb et al. (forthcoming).  The models are 

estimated using panel data for all fifty states and the District of Columbia for the years 

1980 to 2004.  The classical and Bayesian estimates correspond well with each other.  

The classical results presented in Table II correspond in sign with the expected values 

                                                 
15 See, for example, Granger and Uhlig (1990) or Cassell and Fowles (1998). 
16 The correlation matrix for FATAL and the primary explanatory variables is provided in Appendix 2. 
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suggested in Table I.  Most interestingly, the Bayesian analysis corresponds well with the 

classical analysis. 

 Using the Bayesian results reported in Table IV and comparing them with the 

classical results of Table II, we find the following: 

The coefficient of YEAR is significant in the classical model and is stable using both a 

75% and 95% ellipsoid using EBA.  The same is true for PERSE.  The coefficient of 

BEER in the classical case corresponds well with the Bayesian case with the 75% 

ellipsoid. The correspondence between the classical estimates and the Bayesian ones 

remain intact for ANNUAL, SPEED_RU, and MLDA.  In the classical model, the 

coefficients associated with these variables prove statistically insignificant at usual levels 

and the EBA estimates are fragile. The coefficient associated with BELT is just about 

significant in the classical case but is fragile using EBA.  This may not be surprising, 

given the marginal significance of this coefficient in the classical case.  Most 

interestingly from our perspective, the coefficients associated with the various CELL 

variables prove statistically significant and with signs expected based on Loeb et al. 

(forthcoming).  These results are consistent with the EBA results which remain stable at 

both the 75% and 95% likelihood ellipsoids.  This once again indicates that there are life-

taking and life-saving effects associated with cell phones as they relate to motor vehicle 

fatality rates.  Initially, cell phones contribute to motor vehicle fatality rates. This may be 

due to the inability of drivers to use phones and drive, a diminution of a driver’s attention 

span, among other reasons. Later the net effect of cell phones is associated with a 

reduction of the fatality rate.  This may be due to the necessity of having a critical mass 

of cell phones available among the public so that the likelihood of those not involve in an 
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accident calling for assistance is high.  As such, the victims may be afforded a greater 

probability of taking advantage of the “golden hour.”  However, after yet another critical 

amount of cell phones enter use, the life-taking effect overwhelms the life-saving effect.  

This may be due to the rapid pace by which cell phones are entering usage and the 

growth rate of cell phone use by drivers.  As a stylization, Figure 1 plots fatality rates 

against cell phone subscriptions using the parameter estimates from Table II.  Although 

more research is needed on the exact timing of when cell phone use becomes 

problematic, the overall picture is clear.   

 

Figure 1 
Fatality Rates Plotted Against Cell Phones 
Using Parameter Estimates from Table II 

Fatal =  .1+.78e-7*cell-.105e-13*cell^2+.353e-21*cell^3 
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 The bottom line is that cell phones have an adverse affect on motor vehicle 

fatality rates.  Policy makers may encourage their legislatures to prohibit the use of cell 

phones by drivers.  These bans might be associated with fines/penalties so as to influence 

driver behavior.  In addition, thought should be given to extending these bans from 

secondary enforcement to primary enforcement.  Future research can entertain these 

possibilities so as to lower motor vehicle fatality rates. 
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Appendix 1 -- Data Sources 
 
Variable Source 
FATAL  National Transportation Statistics (various years), Federal 

Highway Administration, National Highway and Traffic 
Safety Administration. 
 

PERSE Digest of State Alcohol Highway Safety Related 
Legislation (various years). Traffic Safety Facts, National 
Highway and Traffic Safety Administration. 
 

ANNUAL Digest of Motor Laws (various years), American 
Automobile Association. 
 

SPEED_RU Highway Statistics (various years), Federal Highway 
Administration, National Highway and Traffic Safety 
Administration. 
 

BELT Traffic Safety Facts (various years), National Highway 
and Traffic Safety Administration.  
 

BEER Statistical Abstract of the United States, U.S. Census 
Bureau. 
 

MLDA Digest of State Alcohol Highway Safety Related 
Legislation (various years). Traffic Safety Facts, National 
Highway and Traffic Safety Administration. 
 

YOUNG State Population Estimates (various years), U.S. Census 
Bureau. 
 

CELL Cellular Telecommunication and Internet Association 
Wireless Industry Survey, International Association for 
the Wireless Telecommunications Industry.  
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Appendix 2 – Correlation matrix of FATAL and primary explanatory variables 
 
 
             |   fatal     year     perse  annual  speed_ru     belt     beer     mlda    young cellphone 
-------------+------------------------------------------------------------------------------------------ 
       fatal |   1.0000 
       years |  -0.6832   1.0000 
       perse |  -0.2546   0.2187   1.0000 
      annual |  -0.0627   0.0097  -0.0328   1.0000 
    speed_ru |  -0.1751   0.5303   0.1674  -0.1286   1.0000 
        belt |  -0.5520   0.7311   0.2663  -0.0257   0.3184   1.0000 
        beer |   0.3084  -0.2181   0.0202  -0.1589  -0.0719  -0.2202   1.0000 
        mlda |  -0.4589   0.5539   0.2137  -0.0388   0.2748   0.5280  -0.1617   1.0000 
       young |   0.3896  -0.1786  -0.1386  -0.0499   0.2012  -0.3189   0.0146  -0.3273   1.0000 
   cellphone |  -0.3489   0.5115   0.0494  -0.0176   0.2869   0.3120  -0.1886   0.1854   0.0272   1.000 
 
 


